Nonstandard Analysis

Nonstandard analysis was originally developed by Robinson to rigorously justify infinitesimals like df and dx in expressions like df/dx in Leibniz' calculus or even to justify concepts like \delta-`functions'. However, the approach is much more general and was soon extended by Henson, Luxe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Väth, Martin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02722nam a22004215i 4500
001 978-3-7643-7774-8
003 DE-He213
005 20151204152951.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764377748  |9 978-3-7643-7774-8 
024 7 |a 10.1007/978-3-7643-7774-8  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Väth, Martin.  |e author. 
245 1 0 |a Nonstandard Analysis  |h [electronic resource] /  |c by Martin Väth. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2007. 
300 |a VIII, 252 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminaries -- Nonstandard Models -- Nonstandard Real Analysis -- Enlargements and Saturated Models -- Functionals, Generalized Limits, and Additive Measures -- Nonstandard Topology and Functional Analysis -- Miscellaneous. 
520 |a Nonstandard analysis was originally developed by Robinson to rigorously justify infinitesimals like df and dx in expressions like df/dx in Leibniz' calculus or even to justify concepts like \delta-`functions'. However, the approach is much more general and was soon extended by Henson, Luxemburg and others to a useful tool especially in more advanced analysis, topology, and functional analysis. The book is an introduction with emphasis on those more advanced applications in analysis which are hardly accessible by other methods. Examples of such topics are a deeper analysis of certain functionals like Hahn-Banach limits or of finitely additive measures: From the viewpoint of classical analysis these are strange objects whose mere existence is even hard to prove. From the viewpoint of nonstandard analysis, these are rather 'explicit' objects. Formally, nonstandard analysis is an application of model theory in analysis. However, the reader of the book is not expected to have any background in model theory; instead knowledge of calculus is required and, although the book is rather self-contained, background in more advanced analysis or (elementary) topology is useful. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764377731 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-7774-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)