Quaternions, Clifford Algebras and Relativistic Physics

The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have priviledged a geometric approach, the author uses an algebraic approach which can be introduced as a tensor product of quaternion algebras and provides a unified ca...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Girard, Patrick R. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02648nam a22005535i 4500
001 978-3-7643-7791-5
003 DE-He213
005 20151204143543.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764377915  |9 978-3-7643-7791-5 
024 7 |a 10.1007/978-3-7643-7791-5  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Girard, Patrick R.  |e author. 
245 1 0 |a Quaternions, Clifford Algebras and Relativistic Physics  |h [electronic resource] /  |c by Patrick R. Girard. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2007. 
300 |a XII, 180 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Quaternions -- Rotation groups SO(4) and SO(3) -- Complex quaternions -- Clifford algebra -- Symmetry groups -- Special relativity -- Classical electromagnetism -- General relativity -- Conclusion. 
520 |a The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have priviledged a geometric approach, the author uses an algebraic approach which can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. The book proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism and general relativity. The volume is intended for students, researchers and instructors in physics, applied mathematics and engineering interested in this new quaternionic Clifford calculus. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Physics. 
650 0 |a Gravitation. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764377908 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-7791-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)