Functional Identities

The theory of functional identities (FIs) is a relatively new one - the first results were published at the beginning of the 1990s, and this is the first book on this subject. An FI can be informally described as an identical relation involving arbitrary elements in an associative ring together with...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Brešar, Matej (Συγγραφέας), Chebotar, Mikhail A. (Συγγραφέας), Martindale, Wallace S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03418nam a22005175i 4500
001 978-3-7643-7796-0
003 DE-He213
005 20151204172626.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764377960  |9 978-3-7643-7796-0 
024 7 |a 10.1007/978-3-7643-7796-0  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Brešar, Matej.  |e author. 
245 1 0 |a Functional Identities  |h [electronic resource] /  |c by Matej Brešar, Mikhail A. Chebotar, Wallace S. Martindale. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2007. 
300 |a XII, 272 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a An Introductory Course -- What is a Functional Identity? -- The Strong Degree and the FI-Degree -- The General Theory -- Constructing d-Free Sets -- Functional Identities on d-Free Sets -- Functional Identities in (Semi)prime Rings -- Applications -- Lie Maps and Related Topics -- Linear Preserver Problems -- Further Applications to Lie Algebras. 
520 |a The theory of functional identities (FIs) is a relatively new one - the first results were published at the beginning of the 1990s, and this is the first book on this subject. An FI can be informally described as an identical relation involving arbitrary elements in an associative ring together with arbitrary (unknown) functions. The goal of the general FI theory is to describe these functions, or, when this is not possible, to describe the structure of the ring admitting the FI in question. This abstract theory has turned out to be a powerful tool for solving a variety of problems in ring theory, Lie algebras, Jordan algebras, linear algebra, and operator theory. The book is divided into three parts. Part I is an introductory one. Part II is the core of the book. It gives a full account of the general FI theory, which is based on the concept of a d-free set; various constructions and concrete examples of d-free sets are given, and FI’s on d-free sets are thoroughly studied. Part III deals with applications. Its main purpose is to demonstrate how one can find FI’s when considering different problems, and then effectively use the general theory exposed in Part II. Perhaps the most illuminating example of the applicability are solutions of long-standing Herstein’s conjectures on Lie homomorphisms and Lie derivations - in the proofs practically the entire FI theory is used. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Functional analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Functional Analysis. 
700 1 |a Chebotar, Mikhail A.  |e author. 
700 1 |a Martindale, Wallace S.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764377953 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-7796-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)