Cluster Analysis for Data Mining and System Identification

This book presents new approaches to data mining and system identification. Algorithms that can be used for the clustering of data have been overviewed. New techniques and tools are presented for the clustering, classification, regression and visualization of complex datasets. Special attention is g...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Abonyi, János (Συγγραφέας), Feil, Balázs (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03797nam a22005055i 4500
001 978-3-7643-7988-9
003 DE-He213
005 20151204145957.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764379889  |9 978-3-7643-7988-9 
024 7 |a 10.1007/978-3-7643-7988-9  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Abonyi, János.  |e author. 
245 1 0 |a Cluster Analysis for Data Mining and System Identification  |h [electronic resource] /  |c by János Abonyi, Balázs Feil. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2007. 
300 |a XVIII, 306 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Classical Fuzzy Cluster Analysis -- Visualization of the Clustering Results -- Clustering for Fuzzy Model Identification — Regression -- Fuzzy Clustering for System Identification -- Fuzzy Model based Classifiers -- Segmentation of Multivariate Time-series. 
520 |a This book presents new approaches to data mining and system identification. Algorithms that can be used for the clustering of data have been overviewed. New techniques and tools are presented for the clustering, classification, regression and visualization of complex datasets. Special attention is given to the analysis of historical process data, tailored algorithms are presented for the data driven modeling of dynamical systems, determining the model order of nonlinear input-output black box models, and the segmentation of multivariate time-series. The main methods and techniques are illustrated through several simulated and real-world applications from data mining and process engineering practice. The book is aimed primarily at practitioners, researches, and professionals in statistics, data mining, business intelligence, and systems engineering, but it is also accessible to graduate and undergraduate students in applied mathematics, computer science, electrical and process engineering. Familiarity with the basics of system identification and fuzzy systems is helpful but not required. Key features: - Detailed overview of the most powerful algorithms and approaches for data mining and system identification is presented. - Extensive references give a good overview of the current state of the application of computational intelligence in data mining and system identification, and suggest further reading for additional research. - Numerous illustrations to facilitate the understanding of ideas and methods presented. - Supporting MATLAB files, available at the website www.fmt.uni-pannon.hu/softcomp create a computational platform for exploration and illustration of many concepts and algorithms presented in the book. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
700 1 |a Feil, Balázs.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764379872 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-7988-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)