Holomorphic Morse Inequalities and Bergman Kernels

This book gives for the first time a self-contained and unified approach to holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel, and presents also various applications. The main analytic tool is the analytic localization technique i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ma, Xiaonan (Συγγραφέας), Marinescu, George (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Σειρά:Progress in Mathematics ; 254
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02972nam a22005175i 4500
001 978-3-7643-8115-8
003 DE-He213
005 20151204165656.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764381158  |9 978-3-7643-8115-8 
024 7 |a 10.1007/978-3-7643-8115-8  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Ma, Xiaonan.  |e author. 
245 1 0 |a Holomorphic Morse Inequalities and Bergman Kernels  |h [electronic resource] /  |c by Xiaonan Ma, George Marinescu. 
246 3 |a Winner of the Ferran Sunyer i Balaguer Prize 2006 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2007. 
300 |a XIII, 422 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 254 
505 0 |a Demailly’s Holomorphic Morse Inequalities -- Characterization of Moishezon Manifolds -- Holomorphic Morse Inequalities on Non-compact Manifolds -- Asymptotic Expansion of the Bergman Kernel -- Kodaira Map -- Bergman Kernel on Non-compact Manifolds -- Toeplitz Operators -- Bergman Kernels on Symplectic Manifolds. 
520 |a This book gives for the first time a self-contained and unified approach to holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel, and presents also various applications. The main analytic tool is the analytic localization technique in local index theory developed by Bismut-Lebeau. The book includes the most recent results in the field and therefore opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are included, e.g., an analytic proof of the Kodaira embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, a compactification of complete Kähler manifolds of pinched negative curvature, the Berezin-Toeplitz quantization, weak Lefschetz theorems, and the asymptotics of the Ray-Singer analytic torsion. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Functions of complex variables. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Marinescu, George.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764380960 
830 0 |a Progress in Mathematics ;  |v 254 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8115-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)