An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
The past decade has witnessed a dramatic and widespread expansion of interest and activity in sub-Riemannian (Carnot-Caratheodory) geometry, motivated both internally by its role as a basic model in the modern theory of analysis on metric spaces, and externally through the continuous development of...
| Main Authors: | Capogna, Luca (Author), Pauls, Scott D. (Author), Danielli, Donatella (Author) |
|---|---|
| Corporate Author: | SpringerLink (Online service) |
| Other Authors: | Tyson, Jeremy T. (Editor) |
| Format: | Electronic eBook |
| Language: | English |
| Published: |
Basel :
Birkhäuser Basel,
2007.
|
| Series: | Progress in Mathematics ;
259 |
| Subjects: | |
| Online Access: | Full Text via HEAL-Link |
Similar Items
-
Complex, Contact and Symmetric Manifolds In Honor of L. Vanhecke /
Published: (2005) -
Pseudo-Differential Operators and Symmetries Background Analysis and Advanced Topics /
by: Ruzhansky, Michael, et al.
Published: (2010) -
Pseudo-Differential Operators, Generalized Functions and Asymptotics
Published: (2013) -
Special Metrics and Group Actions in Geometry
Published: (2017) -
Singularities of Differentiable Maps, Volume 1 Classification of Critical Points, Caustics and Wave Fronts /
by: Arnold, V.I, et al.
Published: (2012)