The Maximum Principle

Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pucci, Patrizia (Συγγραφέας), Serrin, James (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications ; 73
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02603nam a22005055i 4500
001 978-3-7643-8145-5
003 DE-He213
005 20151204145558.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764381455  |9 978-3-7643-8145-5 
024 7 |a 10.1007/978-3-7643-8145-5  |2 doi 
040 |d GrThAP 
050 4 |a QA404.7-405 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT033000  |2 bisacsh 
082 0 4 |a 515.96  |2 23 
100 1 |a Pucci, Patrizia.  |e author. 
245 1 4 |a The Maximum Principle  |h [electronic resource] /  |c by Patrizia Pucci, James Serrin. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2007. 
300 |a X, 236 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 73 
505 0 |a and Preliminaries -- Tangency and Comparison Theorems for Elliptic Inequalities -- Maximum Principles for Divergence Structure Elliptic Differential Inequalities -- Boundary Value Problems for Nonlinear Ordinary Differential Equations -- The Strong Maximum Principle and the Compact Support Principle -- Non-homogeneous Divergence Structure Inequalities -- The Harnack Inequality -- Applications. 
520 |a Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Potential Theory. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Serrin, James.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764381448 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 73 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8145-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)