The Maximum Principle

Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pucci, Patrizia (Συγγραφέας), Serrin, James (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications ; 73
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • and Preliminaries
  • Tangency and Comparison Theorems for Elliptic Inequalities
  • Maximum Principles for Divergence Structure Elliptic Differential Inequalities
  • Boundary Value Problems for Nonlinear Ordinary Differential Equations
  • The Strong Maximum Principle and the Compact Support Principle
  • Non-homogeneous Divergence Structure Inequalities
  • The Harnack Inequality
  • Applications.