Tropical Algebraic Geometry

Tropical geometry is algebraic geometry over the semifield of tropical numbers, i.e., the real numbers and negative infinity enhanced with the (max,+)-arithmetics. Geometrically, tropical varieties are much simpler than their classical counterparts. Yet they carry information about complex and real...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Itenberg, Ilia (Συγγραφέας), Mikhalkin, Grigory (Συγγραφέας), Shustin, Eugenii (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Σειρά:Oberwolfach Seminars ; 35
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • 1. Introduction to tropical geometry - Images under the logarithm - Amoebas - Tropical curves
  • 2. Patchworking of algebraic varieties - Toric geometry - Viro's patchworking method - Patchworking of singular algebraic surfaces - Tropicalization in the enumeration of nodal curves
  • 3. Applications of tropical geometry to enumerative geometry - Tropical hypersurfaces - Correspondence theorem - Welschinger invariants
  • Bibliography.