Topological and Bivariant K-Theory

Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cuntz, Joachim (Συγγραφέας), Meyer, Ralf (Συγγραφέας), Rosenberg, Jonathan M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Σειρά:Oberwolfach Seminars ; 36
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02711nam a22004815i 4500
001 978-3-7643-8399-2
003 DE-He213
005 20151204190202.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764383992  |9 978-3-7643-8399-2 
024 7 |a 10.1007/978-3-7643-8399-2  |2 doi 
040 |d GrThAP 
050 4 |a QA612.33 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.66  |2 23 
100 1 |a Cuntz, Joachim.  |e author. 
245 1 0 |a Topological and Bivariant K-Theory  |h [electronic resource] /  |c by Joachim Cuntz, Ralf Meyer, Jonathan M. Rosenberg. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2007. 
300 |a XII, 262 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Oberwolfach Seminars ;  |v 36 
505 0 |a The elementary algebra of K-theory -- Functional calculus and topological K-theory -- Homotopy invariance of stabilised algebraic K-theory -- Bott periodicity -- The K-theory of crossed products -- Towards bivariant K-theory: how to classify extensions -- Bivariant K-theory for bornological algebras -- A survey of bivariant K-theories -- Algebras of continuous trace, twisted K-theory -- Crossed products by ? and Connes’ Thom Isomorphism -- Applications to physics -- Some connections with index theory -- Localisation of triangulated categories. 
520 |a Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, we discuss other approaches to bivariant K-theories for operator algebras. As applications, we study K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem. 
650 0 |a Mathematics. 
650 0 |a K-theory. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a K-Theory. 
650 2 4 |a Topology. 
700 1 |a Meyer, Ralf.  |e author. 
700 1 |a Rosenberg, Jonathan M.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764383985 
830 0 |a Oberwolfach Seminars ;  |v 36 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8399-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)