|
|
|
|
LEADER |
03868nam a22004575i 4500 |
001 |
978-3-7643-8518-7 |
003 |
DE-He213 |
005 |
20151125151620.0 |
007 |
cr nn 008mamaa |
008 |
100301s2008 sz | s |||| 0|eng d |
020 |
|
|
|a 9783764385187
|9 978-3-7643-8518-7
|
024 |
7 |
|
|a 10.1007/978-3-7643-8518-7
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA8.9-10.3
|
072 |
|
7 |
|a PBC
|2 bicssc
|
072 |
|
7 |
|a PBCD
|2 bicssc
|
072 |
|
7 |
|a MAT018000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3
|2 23
|
100 |
1 |
|
|a Pogorzelski, Witold A.
|e author.
|
245 |
1 |
0 |
|a Completeness Theory for Propositional Logics
|h [electronic resource] /
|c by Witold A. Pogorzelski, Piotr Wojtylak.
|
264 |
|
1 |
|a Basel :
|b Birkhäuser Basel,
|c 2008.
|
300 |
|
|
|a VIII, 178 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Studies in Universal Logic
|
505 |
0 |
|
|a Introduction -- 1. Basic notions: Propositional languages -- Abstract algebras -- Preliminary lattice-theoretical notions -- Propositional logics -- Brief exposition of the most important propositional logics -- 2. Semantic methods in propositional logic: Preordered sets -- Preordered algebras -- Logical matrices -- Adequacy -- Propositional logic and lattice theory -- 3. Completeness of propositional logic: Generalized completeness -- Post-completeness -- The problem of uniqueness of Lindenbaum extensions -- Some related concepts -- 4. Characterization of propositional connectives: Cn-definitions -- The system (D) -- Variants -- The system (I) -- Classical logic -- Appendix: The fundamental metatheorem for the classical propositional logic -- A proof system for the classical logic.
|
520 |
|
|
|a Completeness is one of the most important notions in logic and the foundations of mathematics. Many variants of the notion have been de?ned in literature. We shallconcentrateonthesevariants,andaspects,of completenesswhicharede?ned in propositional logic. Completeness means the possibility of getting all correct and reliable sc- mata of inference by use of logical methods. The word ‘all’, seemingly neutral, is here a crucial point of distinction. Assuming the de?nition as given by E. Post we get, say, a global notion of completeness in which the reliability refers only to syntactic means of logic and outside the correct schemata of inference there are only inconsistent ones. It is impossible, however, to leave aside local aspects of the notion when we want to make it relative to some given or invented notion of truth. Completeness understood in this sense is the adequacy of logic in relation to some semantics, and the change of the logic is accompanied by the change of its semantics. Such completeness was e?ectively used by J. ?ukasiewicz and investigated in general terms by A. Tarski and A. Lindenbaum, which gave strong foundations for research in logic and, in particular, for the notion of consequence operation determined by a logical system. The choice of logical means, by use of which we intend to represent logical inferences, is also important. Most of the de?nitions and results in completeness theory were originally developed in terms of propositional logic. Propositional formal systems ?nd many applications in logic and theoretical computer science.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Mathematical logic.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Mathematical Logic and Foundations.
|
700 |
1 |
|
|a Wojtylak, Piotr.
|e author.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783764385170
|
830 |
|
0 |
|a Studies in Universal Logic
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-7643-8518-7
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|