Walks on Ordinals and Their Characteristics

The analysis of the characteristics of walks on ordinals is a powerful new technique for building mathematical structures, developed by the author over the last twenty years. This is the first book-length exposition of this method. Particular emphasis is placed on applications which are presented in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Todorcevic, Stevo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Σειρά:Progress in Mathematics ; 263
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02388nam a22004575i 4500
001 978-3-7643-8529-3
003 DE-He213
005 20151204162259.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764385293  |9 978-3-7643-8529-3 
024 7 |a 10.1007/978-3-7643-8529-3  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Todorcevic, Stevo.  |e author. 
245 1 0 |a Walks on Ordinals and Their Characteristics  |h [electronic resource] /  |c by Stevo Todorcevic. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2007. 
300 |a VI, 324 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 263 
505 0 |a Walks on Countable Ordinals -- Metric Theory of Countable Ordinals -- Coherent Mappings and Trees -- The Square-bracket Operation on Countable Ordinals -- General Walks and Their Characteristics -- Square Sequences -- The Oscillation Mapping and the Square-bracket Operation -- Unbounded Functions -- Higher Dimensions. 
520 |a The analysis of the characteristics of walks on ordinals is a powerful new technique for building mathematical structures, developed by the author over the last twenty years. This is the first book-length exposition of this method. Particular emphasis is placed on applications which are presented in a unified and comprehensive manner and which stretch across several areas of mathematics such as set theory, combinatorics, general topology, functional analysis, and general algebra. The intended audience for this book are graduate students and researchers working in these areas interested in mastering and applying these methods. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764385286 
830 0 |a Progress in Mathematics ;  |v 263 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8529-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)