Determinantal Ideals

Determinantal ideals are ideals generated by minors of a homogeneous polynomial matrix. Some classical ideals that can be generated in this way are the ideal of the Veronese varieties, of the Segre varieties, and of the rational normal scrolls. Determinantal ideals are a central topic in both commut...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Miró-Roig, Rosa M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2008.
Σειρά:Progress in Mathematics ; 264
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02598nam a22004695i 4500
001 978-3-7643-8535-4
003 DE-He213
005 20151204143231.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764385354  |9 978-3-7643-8535-4 
024 7 |a 10.1007/978-3-7643-8535-4  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Miró-Roig, Rosa M.  |e author. 
245 1 0 |a Determinantal Ideals  |h [electronic resource] /  |c by Rosa M. Miró-Roig. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2008. 
300 |a XVI, 140 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 264 
505 0 |a Background -- CI-liaison and G-liaison of Standard Determinantal Ideals -- Multiplicity Conjecture for Standard Determinantal Ideals -- Unobstructedness and Dimension of Families of Standard Determinantal Ideals -- Determinantal Ideals, Symmetric Determinantal Ideals, and Open Problems. 
520 |a Determinantal ideals are ideals generated by minors of a homogeneous polynomial matrix. Some classical ideals that can be generated in this way are the ideal of the Veronese varieties, of the Segre varieties, and of the rational normal scrolls. Determinantal ideals are a central topic in both commutative algebra and algebraic geometry, and they also have numerous connections with invariant theory, representation theory, and combinatorics. Due to their important role, their study has attracted many researchers and has received considerable attention in the literature. In this book three crucial problems are addressed: CI-liaison class and G-liaison class of standard determinantal ideals; the multiplicity conjecture for standard determinantal ideals; and unobstructedness and dimension of families of standard determinantal ideals. 
650 0 |a Mathematics. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764385347 
830 0 |a Progress in Mathematics ;  |v 264 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8535-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)