Classical Geometries in Modern Contexts Geometry of Real Inner Product Spaces /

This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Benz, Walter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2007.
Έκδοση:Second Edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02689nam a22004455i 4500
001 978-3-7643-8541-5
003 DE-He213
005 20151204151740.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764385415  |9 978-3-7643-8541-5 
024 7 |a 10.1007/978-3-7643-8541-5  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Benz, Walter.  |e author. 
245 1 0 |a Classical Geometries in Modern Contexts  |h [electronic resource] :  |b Geometry of Real Inner Product Spaces /  |c by Walter Benz. 
250 |a Second Edition. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2007. 
300 |a XII, 277 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Translation Groups -- Euclidean and Hyperbolic Geometry -- Sphere Geometries of Möbius and Lie -- Lorentz Transformations -- ?-Projective Mappings, Isomorphism Theorems. 
520 |a This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764385408 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8541-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)