|
|
|
|
LEADER |
03115nam a22006135i 4500 |
001 |
978-3-7643-8614-6 |
003 |
DE-He213 |
005 |
20151204165700.0 |
007 |
cr nn 008mamaa |
008 |
100301s2008 sz | s |||| 0|eng d |
020 |
|
|
|a 9783764386146
|9 978-3-7643-8614-6
|
024 |
7 |
|
|a 10.1007/978-3-7643-8614-6
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA440-699
|
072 |
|
7 |
|a PBM
|2 bicssc
|
072 |
|
7 |
|a MAT012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516
|2 23
|
100 |
1 |
|
|a Catoni, Francesco.
|e author.
|
245 |
1 |
4 |
|a The Mathematics of Minkowski Space-Time
|h [electronic resource] :
|b With an Introduction to Commutative Hypercomplex Numbers /
|c by Francesco Catoni, Dino Boccaletti, Roberto Cannata, Vincenzo Catoni, Enrico Nichelatti, Paolo Zampetti.
|
264 |
|
1 |
|a Basel :
|b Birkhäuser Basel,
|c 2008.
|
300 |
|
|
|a XIX, 256 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Frontiers in Mathematics,
|x 1660-8046
|
505 |
0 |
|
|a N-Dimensional Commutative Hypercomplex Numbers -- The Geometries Generated by Hypercomplex Numbers -- Trigonometry in the Minkowski Plane -- Uniform and Accelerated Motions in the Minkowski Space-Time (Twin Paradox) -- General Two-Dimensional Hypercomplex Numbers -- Functions of a Hyperbolic Variable -- Hyperbolic Variables on Lorentz Surfaces -- Constant Curvature Lorentz Surfaces -- Generalization of Two-Dimensional Special Relativity (Hyperbolic Transformations and the Equivalence Principle).
|
520 |
|
|
|a Hyperbolic numbers are proposed for a rigorous geometric formalization of the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers as a simple extension of the field of complex numbers is extensively studied in the book. In particular, an exhaustive solution of the "twin paradox" is given, followed by a detailed exposition of space-time geometry and trigonometry. Finally, an appendix on general properties of commutative hypercomplex systems with four unities is presented.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Topological groups.
|
650 |
|
0 |
|a Lie groups.
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
0 |
|a Analysis (Mathematics).
|
650 |
|
0 |
|a Geometry.
|
650 |
|
0 |
|a Differential geometry.
|
650 |
|
0 |
|a Physics.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Geometry.
|
650 |
2 |
4 |
|a Differential Geometry.
|
650 |
2 |
4 |
|a Mathematical Methods in Physics.
|
650 |
2 |
4 |
|a Topological Groups, Lie Groups.
|
650 |
2 |
4 |
|a Analysis.
|
700 |
1 |
|
|a Boccaletti, Dino.
|e author.
|
700 |
1 |
|
|a Cannata, Roberto.
|e author.
|
700 |
1 |
|
|a Catoni, Vincenzo.
|e author.
|
700 |
1 |
|
|a Nichelatti, Enrico.
|e author.
|
700 |
1 |
|
|a Zampetti, Paolo.
|e author.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783764386139
|
830 |
|
0 |
|a Frontiers in Mathematics,
|x 1660-8046
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-7643-8614-6
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|