The Mathematics of Minkowski Space-Time With an Introduction to Commutative Hypercomplex Numbers /

Hyperbolic numbers are proposed for a rigorous geometric formalization of the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers as a simple extension of the field of complex numbers is extensively studied in the book. In particular, an exhaustive solution of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Catoni, Francesco (Συγγραφέας), Boccaletti, Dino (Συγγραφέας), Cannata, Roberto (Συγγραφέας), Catoni, Vincenzo (Συγγραφέας), Nichelatti, Enrico (Συγγραφέας), Zampetti, Paolo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2008.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03115nam a22006135i 4500
001 978-3-7643-8614-6
003 DE-He213
005 20151204165700.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764386146  |9 978-3-7643-8614-6 
024 7 |a 10.1007/978-3-7643-8614-6  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Catoni, Francesco.  |e author. 
245 1 4 |a The Mathematics of Minkowski Space-Time  |h [electronic resource] :  |b With an Introduction to Commutative Hypercomplex Numbers /  |c by Francesco Catoni, Dino Boccaletti, Roberto Cannata, Vincenzo Catoni, Enrico Nichelatti, Paolo Zampetti. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2008. 
300 |a XIX, 256 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a N-Dimensional Commutative Hypercomplex Numbers -- The Geometries Generated by Hypercomplex Numbers -- Trigonometry in the Minkowski Plane -- Uniform and Accelerated Motions in the Minkowski Space-Time (Twin Paradox) -- General Two-Dimensional Hypercomplex Numbers -- Functions of a Hyperbolic Variable -- Hyperbolic Variables on Lorentz Surfaces -- Constant Curvature Lorentz Surfaces -- Generalization of Two-Dimensional Special Relativity (Hyperbolic Transformations and the Equivalence Principle). 
520 |a Hyperbolic numbers are proposed for a rigorous geometric formalization of the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers as a simple extension of the field of complex numbers is extensively studied in the book. In particular, an exhaustive solution of the "twin paradox" is given, followed by a detailed exposition of space-time geometry and trigonometry. Finally, an appendix on general properties of commutative hypercomplex systems with four unities is presented. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Geometry. 
650 0 |a Differential geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Analysis. 
700 1 |a Boccaletti, Dino.  |e author. 
700 1 |a Cannata, Roberto.  |e author. 
700 1 |a Catoni, Vincenzo.  |e author. 
700 1 |a Nichelatti, Enrico.  |e author. 
700 1 |a Zampetti, Paolo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764386139 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8614-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)