The Mathematics of Minkowski Space-Time With an Introduction to Commutative Hypercomplex Numbers /
Hyperbolic numbers are proposed for a rigorous geometric formalization of the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers as a simple extension of the field of complex numbers is extensively studied in the book. In particular, an exhaustive solution of...
Κύριοι συγγραφείς: | , , , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Basel :
Birkhäuser Basel,
2008.
|
Σειρά: | Frontiers in Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- N-Dimensional Commutative Hypercomplex Numbers
- The Geometries Generated by Hypercomplex Numbers
- Trigonometry in the Minkowski Plane
- Uniform and Accelerated Motions in the Minkowski Space-Time (Twin Paradox)
- General Two-Dimensional Hypercomplex Numbers
- Functions of a Hyperbolic Variable
- Hyperbolic Variables on Lorentz Surfaces
- Constant Curvature Lorentz Surfaces
- Generalization of Two-Dimensional Special Relativity (Hyperbolic Transformations and the Equivalence Principle).