Vanishing and Finiteness Results in Geometric Analysis A Generalization of the Bochner Technique /

This book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pigola, Stefano (Συγγραφέας), Setti, Alberto G. (Συγγραφέας), Rigoli, Marco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2008.
Σειρά:Progress in Mathematics ; 266
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03298nam a22005295i 4500
001 978-3-7643-8642-9
003 DE-He213
005 20151125231557.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764386429  |9 978-3-7643-8642-9 
024 7 |a 10.1007/978-3-7643-8642-9  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Pigola, Stefano.  |e author. 
245 1 0 |a Vanishing and Finiteness Results in Geometric Analysis  |h [electronic resource] :  |b A Generalization of the Bochner Technique /  |c by Stefano Pigola, Alberto G. Setti, Marco Rigoli. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2008. 
300 |a XIV, 282 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 266 
505 0 |a Harmonic, pluriharmonic, holomorphic maps and basic Hermitian and Kählerian geometry -- Comparison Results -- Review of spectral theory -- Vanishing results -- A finite-dimensionality result -- Applications to harmonic maps -- Some topological applications -- Constancy of holomorphic maps and the structure of complete Kähler manifolds -- Splitting and gap theorems in the presence of a Poincaré-Sobolev inequality. 
520 |a This book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods from spectral theory and qualitative properties of solutions of PDEs to comparison theorems in Riemannian geometry and potential theory. All needed tools are described in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds. The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Analysis. 
700 1 |a Setti, Alberto G.  |e author. 
700 1 |a Rigoli, Marco.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764386412 
830 0 |a Progress in Mathematics ;  |v 266 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8642-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)