Optimal Domain and Integral Extension of Operators Acting in Function Spaces /

Operator theory and functional analysis have a long tradition, initially being guided by problems from mathematical physics and applied mathematics. Much of the work in Banach spaces from the 1930s onwards resulted from investigating how much real (and complex) variable function theory might be exte...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Okada, Susumu (Συγγραφέας), Ricker, Werner J. (Συγγραφέας), Sánchez Pérez, Enrique A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2008.
Σειρά:Operator Theory: Advances and Applications ; 180
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03149nam a22004935i 4500
001 978-3-7643-8648-1
003 DE-He213
005 20151204180505.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764386481  |9 978-3-7643-8648-1 
024 7 |a 10.1007/978-3-7643-8648-1  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Okada, Susumu.  |e author. 
245 1 0 |a Optimal Domain and Integral Extension of Operators  |h [electronic resource] :  |b Acting in Function Spaces /  |c by Susumu Okada, Werner J. Ricker, Enrique A. Sánchez Pérez. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2008. 
300 |a XII, 400 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications ;  |v 180 
505 0 |a Quasi-Banach Function Spaces -- Vector Measures and Integration Operators -- Optimal Domains and Integral Extensions -- p-th Power Factorable Operators -- Factorization of p-th Power Factorable Operators through Lq-spaces -- Operators from Classical Harmonic Analysis. 
520 |a Operator theory and functional analysis have a long tradition, initially being guided by problems from mathematical physics and applied mathematics. Much of the work in Banach spaces from the 1930s onwards resulted from investigating how much real (and complex) variable function theory might be extended to fu- tions taking values in (function) spaces or operators acting in them. Many of the ?rst ideas in geometry, basis theory and the isomorphic theory of Banach spaces have vector measure-theoretic origins and can be credited (amongst others) to N. Dunford, I.M. Gelfand, B.J. Pettis and R.S. Phillips. Somewhat later came the penetratingcontributionsofA.Grothendieck,whichhavepervadedandin?uenced theshapeoffunctionalanalysisandthetheoryofvectormeasures/integrationever since. Today, each of the areas of functional analysis/operator theory, Banach spaces, and vector measures/integration is a strong discipline in its own right. However, it is not always made clear that these areas grew up together as cousins and that they had, and still have, enormous in?uences on one another. One of the aims of this monograph is to reinforce and make transparent precisely this important point. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Operator Theory. 
700 1 |a Ricker, Werner J.  |e author. 
700 1 |a Sánchez Pérez, Enrique A.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764386474 
830 0 |a Operator Theory: Advances and Applications ;  |v 180 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8648-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)