Metric Foliations and Curvature

In the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a repr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gromoll, Detlef (Συγγραφέας), Walschap, Gerard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2009.
Σειρά:Progress in Mathematics ; 268
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02242nam a22004455i 4500
001 978-3-7643-8715-0
003 DE-He213
005 20151125161238.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783764387150  |9 978-3-7643-8715-0 
024 7 |a 10.1007/978-3-7643-8715-0  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Gromoll, Detlef.  |e author. 
245 1 0 |a Metric Foliations and Curvature  |h [electronic resource] /  |c by Detlef Gromoll, Gerard Walschap. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2009. 
300 |a VIII, 176 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 268 
505 0 |a Submersions, Foliations, and Metrics -- Basic Constructions and Examples -- Open Manifolds of Nonnegative Curvature -- Metric Foliations in Space Forms. 
520 |a In the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a representative handful by means of metric fibrations or deformations thereof. This text is an attempt to document some of these constructions, many of which have only appeared in journal form. The emphasis here is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
700 1 |a Walschap, Gerard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764387143 
830 0 |a Progress in Mathematics ;  |v 268 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8715-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)