Approximation of Additive Convolution-Like Operators Real C*-Algebra Approach /

Various aspects of numerical analysis for equations arising in boundary integral equation methods have been the subject of several books published in the last 15 years [95, 102, 183, 196, 198]. Prominent examples include various classes of o- dimensional singular integral equations or equations rela...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Didenko, Victor D. (Συγγραφέας), Silbermann, Bernd (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2008.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03747nam a22005775i 4500
001 978-3-7643-8751-8
003 DE-He213
005 20151204183035.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764387518  |9 978-3-7643-8751-8 
024 7 |a 10.1007/978-3-7643-8751-8  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Didenko, Victor D.  |e author. 
245 1 0 |a Approximation of Additive Convolution-Like Operators  |h [electronic resource] :  |b Real C*-Algebra Approach /  |c by Victor D. Didenko, Bernd Silbermann. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2008. 
300 |a XII, 306 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Complex and Real Algebras -- Approximation of Additive Integral Operators on Smooth Curves -- Approximation Methods for the Riemann-Hilbert Problem -- Piecewise Smooth and Open Contours -- Approximation Methods for the Muskhelishvili Equation -- Numerical Examples. 
520 |a Various aspects of numerical analysis for equations arising in boundary integral equation methods have been the subject of several books published in the last 15 years [95, 102, 183, 196, 198]. Prominent examples include various classes of o- dimensional singular integral equations or equations related to single and double layer potentials. Usually, a mathematically rigorous foundation and error analysis for the approximate solution of such equations is by no means an easy task. One reason is the fact that boundary integral operators generally are neither integral operatorsof the formidentity plus compact operatornor identity plus an operator with a small norm. Consequently, existing standard theories for the numerical analysis of Fredholm integral equations of the second kind are not applicable. In the last 15 years it became clear that the Banach algebra technique is a powerful tool to analyze the stability problem for relevant approximation methods [102, 103, 183, 189]. The starting point for this approach is the observation that the ? stability problem is an invertibility problem in a certain BanachorC -algebra. As a rule, this algebra is very complicated – and one has to ?nd relevant subalgebras to use such tools as local principles and representation theory. However,invariousapplicationsthereoftenarisecontinuousoperatorsacting on complex Banach spaces that are not linear but only additive – i. e. , A(x+y)= Ax+Ay for all x,y from a given Banach space. It is easily seen that additive operators 1 are R-linear provided they are continuous. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Integral equations. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Operator theory. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Operator Theory. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Integral Equations. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Silbermann, Bernd.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764387501 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8751-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)