Group-based Cryptography

This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It is explored how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Myasnikov, Alexei (Συγγραφέας), Ushakov, Alexander (Συγγραφέας), Shpilrain, Vladimir (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2008.
Σειρά:Advanced Courses in Mathematics - CRM Barcelona, Centre de Recerca Matemàtica
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03478nam a22005055i 4500
001 978-3-7643-8827-0
003 DE-He213
005 20151123155909.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764388270  |9 978-3-7643-8827-0 
024 7 |a 10.1007/978-3-7643-8827-0  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Myasnikov, Alexei.  |e author. 
245 1 0 |a Group-based Cryptography  |h [electronic resource] /  |c by Alexei Myasnikov, Alexander Ushakov, Vladimir Shpilrain. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2008. 
300 |a XV, 183 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Courses in Mathematics - CRM Barcelona, Centre de Recerca Matemàtica 
505 0 |a Background on Groups, Complexity, and Cryptography -- Background on Public Key Cryptography -- Background on Combinatorial Group Theory -- Background on Computational Complexity -- Non-commutative Cryptography -- Canonical Non-commutative Cryptography -- Platform Groups -- Using Decision Problems in Public Key Cryptography -- Generic Complexity and Cryptanalysis -- Distributional Problems and the Average-Case Complexity -- Generic Case Complexity -- Generic Complexity of NP-complete Problems -- Asymptotically Dominant Properties and Cryptanalysis -- Asymptotically Dominant Properties -- Length-Based and Quotient Attacks. 
520 |a This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It is explored how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public key cryptography. It is also shown that there is a remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. Then, complexity theory, notably generic-case complexity of algorithms, is employed for cryptanalysis of various cryptographic protocols based on infinite groups, and the ideas and machinery from the theory of generic-case complexity are used to study asymptotically dominant properties of some infinite groups that have been applied in public key cryptography so far. Its elementary exposition makes the book accessible to graduate as well as undergraduate students in mathematics or computer science. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Computer mathematics. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Combinatorics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
700 1 |a Ushakov, Alexander.  |e author. 
700 1 |a Shpilrain, Vladimir.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764388263 
830 0 |a Advanced Courses in Mathematics - CRM Barcelona, Centre de Recerca Matemàtica 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8827-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)