Dimension and Recurrence in Hyperbolic Dynamics

The main objective of this book is to give a broad unified introduction to the study of dimension and recurrence in hyperbolic dynamics. It includes the discussion of the foundations, main results, and main techniques in the rich interplay of four main areas of research: hyperbolic dynamics, dimensi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Barreira, Luis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2008.
Σειρά:Progress in Mathematics ; 272
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03627nam a22005295i 4500
001 978-3-7643-8882-9
003 DE-He213
005 20151125191540.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764388829  |9 978-3-7643-8882-9 
024 7 |a 10.1007/978-3-7643-8882-9  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Barreira, Luis.  |e author. 
245 1 0 |a Dimension and Recurrence in Hyperbolic Dynamics  |h [electronic resource] /  |c by Luis Barreira. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2008. 
300 |a XIV, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 272 
505 0 |a Basic Notions -- Basic Notions -- Dimension Theory -- Dimension Theory and Thermodynamic Formalism -- Repellers and Hyperbolic Sets -- Measures of Maximal Dimension -- Multifractal Analysis: Core Theory -- Multifractal Analysis of Equilibrium Measures -- General Concept of Multifractal Analysis -- Dimension of Irregular Sets -- Variational Principles in Multifractal Analysis -- Multifractal Analysis: Further Developments -- Multidimensional Spectra and Number Theory -- Multifractal Rigidity -- Hyperbolic Sets: Past and Future -- Hyperbolicity and Recurrence -- Pointwise Dimension for Hyperbolic Dynamics -- Product Structure of Hyperbolic Measures -- Quantitative Recurrence and Dimension Theory. 
520 |a The main objective of this book is to give a broad unified introduction to the study of dimension and recurrence in hyperbolic dynamics. It includes the discussion of the foundations, main results, and main techniques in the rich interplay of four main areas of research: hyperbolic dynamics, dimension theory, multifractal analysis, and quantitative recurrence. It also gives a panorama of several selected topics of current research interest. More than half of the material appears here for the first time in book form, describing many recent developments in the area such as topics on irregular sets, variational principles, applications to number theory, measures of maximal dimension, multifractal nonrigidity, and quantitative recurrence. All the results are included with detailed proofs, many of them simplified or rewritten on purpose for the book. The text is self-contained and directed to researchers as well as graduate students that wish to have a global view of the theory together with a working knowledge of its main techniques. It will also be useful as as basis for graduate courses in dimension theory of dynamical systems, multifractal analysis, and pointwise dimension and recurrence in hyperbolic dynamics. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764388812 
830 0 |a Progress in Mathematics ;  |v 272 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8882-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)