Lectures on Algebraic Statistics

How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Drton, Mathias (Συγγραφέας), Sturmfels, Bernd (Συγγραφέας), Sullivant, Seth (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2009.
Σειρά:Oberwolfach Seminars ; 39
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02762nam a22004935i 4500
001 978-3-7643-8905-5
003 DE-He213
005 20151204153857.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783764389055  |9 978-3-7643-8905-5 
024 7 |a 10.1007/978-3-7643-8905-5  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Drton, Mathias.  |e author. 
245 1 0 |a Lectures on Algebraic Statistics  |h [electronic resource] /  |c by Mathias Drton, Bernd Sturmfels, Seth Sullivant. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2009. 
300 |a VIII, 172 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Oberwolfach Seminars ;  |v 39 
505 0 |a Markov Bases -- Likelihood Inference -- Conditional Independence -- Hidden Variables -- Bayesian Integrals -- Exercises -- Open Problems. 
520 |a How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models. 
650 0 |a Statistics. 
650 0 |a Algebraic geometry. 
650 0 |a Probabilities. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Sturmfels, Bernd.  |e author. 
700 1 |a Sullivant, Seth.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764389048 
830 0 |a Oberwolfach Seminars ;  |v 39 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-8905-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)