Optimal Control of Coupled Systems of Partial Differential Equations

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kunisch, Karl (Επιμελητής έκδοσης), Sprekels, Jürgen (Επιμελητής έκδοσης), Leugering, Günter (Επιμελητής έκδοσης), Tröltzsch, Fredi (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2009.
Σειρά:International Series of Numerical Mathematics ; 158
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Beyond Lack of Compactness and Lack of Stability of a Coupled Parabolic-Hyperbolic Fluid-Structure System
  • A Continuous Adjoint Approach to Shape Optimization for Navier Stokes Flow
  • Recent Advances in the Analysis of State-constrained Elliptic Optimal Control Problems
  • Fast and Strongly Localized Observation for a perturbed Plate Equation
  • Representations, Composition, and Decomposition of C 1,1-hypersurfaces
  • On Some Nonlinear Optimal Control Problems with Vector-valued Affine Control Constraints
  • Weak Solutions to a Model for Crystal Growth from the Melt in Changing Magnetic Fields
  • Lavrentiev Prox-regularization Methods for Optimal Control Problems with Pointwise State Constraints
  • Nonlinear Feedback Solutions for a Class of Quantum Control Problems
  • Optimal Feedback Synthesis for Bolza Control Problem Arising in Linearized Fluid Structure Interaction
  • Single-step One-shot Aerodynamic Shape Optimization
  • Shape Differentiability of Drag Functional for Compressible Navier-Stokes Equations
  • Null-controllability for a Coupled Heat-Finite-dimensional Beam System
  • Feedback Modal Control of Partial Differential Equations
  • Optimization Problems for Thin Elastic Structures
  • A New Non-linear Semidefinite Programming Algorithm with an Application to Multidisciplinary Free Material Optimization
  • How to Check Numerically the Sufficient Optimality Conditions for Infinite-dimensional Optimization Problems
  • Hidden Boundary Shape Derivative for the Solution to Maxwell Equations and Non Cylindrical Wave Equations.