Spacetime, Geometry and Gravitation

This is an introductory book on the general theory of relativity based partly on lectures given to students of M.Sc. Physics at my university. The book is divided into three parts. The ?rst part is a preliminary course on general relativity with minimum preparation. The second part builds the ma- em...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sharan, Pankaj (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2009.
Σειρά:Progress in Mathematical Physics ; 56
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03404nam a22004935i 4500
001 978-3-7643-9971-9
003 DE-He213
005 20151030191249.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783764399719  |9 978-3-7643-9971-9 
024 7 |a 10.1007/978-3-7643-9971-9  |2 doi 
040 |d GrThAP 
050 4 |a QC178 
050 4 |a QC173.5-173.65 
072 7 |a PHDV  |2 bicssc 
072 7 |a PHR  |2 bicssc 
072 7 |a SCI033000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Sharan, Pankaj.  |e author. 
245 1 0 |a Spacetime, Geometry and Gravitation  |h [electronic resource] /  |c by Pankaj Sharan. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2009. 
300 |a XIV, 355 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics ;  |v 56 
505 0 |a Spacetime -- What is Curvature? -- General Relativity Basics -- Spherically Symmetric Gravitational Field -- Geometry -- Vectors and Tensors -- Inner Product -- Elementary Differential Geometry -- Connection and Curvature -- Riemannian Geometry -- Additional Topics in Geometry -- Gravitation -- The Einstein Equation -- General Features of Spacetime -- Weak Gravitational Fields -- Schwarzschild and Kerr Solutions -- Cosmology -- Special Topics. 
520 |a This is an introductory book on the general theory of relativity based partly on lectures given to students of M.Sc. Physics at my university. The book is divided into three parts. The ?rst part is a preliminary course on general relativity with minimum preparation. The second part builds the ma- ematical background and the third part deals with topics where mathematics developed in the second part is needed. The ?rst chapter gives a general background and introduction. This is f- lowed by an introduction to curvature through Gauss’ Theorema Egregium. This theorem expresses the curvature of a two-dimensional surface in terms of intrinsic quantitiesrelatedtothein?nitesimaldistancefunctiononthesurface.Thestudent isintroducedtothemetrictensor,Christo?elsymbolsandRiemanncurvaturet- sor by elementary methods in the familiar and visualizable case of two dimensions. This early introduction to geometric quantities equips a student to learn simpler topics in general relativity like the Newtonian limit, red shift, the Schwarzschild solution, precession of the perihelion and bending of light in a gravitational ?eld. Part II (chapters 5 to 10) is an introduction to Riemannian geometry as - quired by general relativity. This is done from the beginning, starting with vectors and tensors. I believe that students of physics grasp physical concepts better if they are not shaky about the mathematics involved. 
650 0 |a Physics. 
650 0 |a Geometry. 
650 0 |a Gravitation. 
650 1 4 |a Physics. 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Geometry. 
650 2 4 |a Physics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764399702 
830 0 |a Progress in Mathematical Physics ;  |v 56 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-9971-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)