Symplectic Methods in Harmonic Analysis and in Mathematical Physics

The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limite...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gosson, Maurice A. de (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2011.
Σειρά:Pseudo-Differential Operators, Theory and Applications ; 7
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03426nam a22004935i 4500
001 978-3-7643-9992-4
003 DE-He213
005 20151030021057.0
007 cr nn 008mamaa
008 110728s2011 sz | s |||| 0|eng d
020 |a 9783764399924  |9 978-3-7643-9992-4 
024 7 |a 10.1007/978-3-7643-9992-4  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Gosson, Maurice A. de.  |e author. 
245 1 0 |a Symplectic Methods in Harmonic Analysis and in Mathematical Physics  |h [electronic resource] /  |c by Maurice A. de Gosson. 
264 1 |a Basel :  |b Springer Basel,  |c 2011. 
300 |a XXIV, 338 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Pseudo-Differential Operators, Theory and Applications ;  |v 7 
520 |a The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space is introduced and studied, where the main role is played by “Bopp operators” (also called “Landau operators” in the literature). This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references. 
650 0 |a Mathematics. 
650 0 |a Operator theory. 
650 0 |a Partial differential equations. 
650 0 |a Differential geometry. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764399917 
830 0 |a Pseudo-Differential Operators, Theory and Applications ;  |v 7 
856 4 0 |u http://dx.doi.org/10.1007/978-3-7643-9992-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)