Advanced Fuzzy Systems Design and Applications

Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jin, Yaochu (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Studies in Fuzziness and Soft Computing, 112
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05841nam a2200565 4500
001 978-3-7908-1771-3
003 DE-He213
005 20191220124732.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783790817713  |9 978-3-7908-1771-3 
024 7 |a 10.1007/978-3-7908-1771-3  |2 doi 
040 |d GrThAP 
050 4 |a QA76.6-76.66 
072 7 |a UM  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
072 7 |a UM  |2 thema 
082 0 4 |a 005.11  |2 23 
100 1 |a Jin, Yaochu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advanced Fuzzy Systems Design and Applications  |h [electronic resource] /  |c by Yaochu Jin. 
250 |a 1st ed. 2003. 
264 1 |a Heidelberg :  |b Physica-Verlag HD :  |b Imprint: Physica,  |c 2003. 
300 |a X, 272 p. 228 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 112 
505 0 |a 1. Fuzzy Sets and Fuzzy Systems -- 1.1 Basics of Fuzzy Sets -- 1.2 Fuzzy Rule Systems -- 1.3 Interpretability of Fuzzy Rule System -- 1.4 Knowledge Processing with Fuzzy Logic -- 2. Evolutionary Algorithms -- 2.1 Introduction -- 2.2 Generic Evolutionary Algorithms -- 2.3 Adaptation and Self-Adaptation in Evolutionary Algorithms -- 2.4 Constraints Handling -- 2.5 Multi-objective Evolution -- 2.6 Evolution with Uncertain Fitness Functions -- 2.7 Parallel Implementations -- 2.8 Summary -- 3. Artificial Neural Networks -- 3.1 Introduction -- 3.2 Feedforward Neural Network Models -- 3.3 Learning Algorithms -- 3.4 Improvement of Generalization -- 3.5 Rule Extraction from Neural Networks -- 3.6 Interaction between Evolution and Learning -- 3.7 Summary -- 4. Conventional Data-driven Fuzzy Systems Design -- 4.1 Introduction -- 4.2 Fuzzy Inference Based Method -- 4.3 Wang-Mendel's Method -- 4.4 A Direct Method -- 4.5 An Adaptive Fuzzy Optimal Controller -- 4.6 Summary -- 5.Neural Network Based Fuzzy Systems Design -- 5.1 Neurofuzzy Systems -- 5.2 The Pi-sigma Neurofuzzy Model -- 5.3 Modeling and Control Using the Neurofuzzy System -- 5.4 Neurofuzzy Control of Nonlinear Systems -- 5.5 Summary -- 6. Evolutionary Design of Fuzzy Systems -- 6.1 Introduction -- 6.2 Evolutionary Design of Flexible Structured Fuzzy Controller. -- 6.3 Evolutionary Optimization of Fuzzy Rules -- 6.4 Fuzzy Systems Design for High-Dimensional Systems -- 6.5 Summary -- 7. Knowledge Discovery by Extracting Interpretable Fuzzy Rules -- 7.1 Introduction -- 7.2 Evolutionary Interpretable Fuzzy Rule Generation -- 7.3 Interactive Co-evolution for Fuzzy Rule Extraction -- 7.4 Fuzzy Rule Extraction from RBF Networks -- 7.5 Summary -- 8. Fuzzy Knowledge Incorporation into Neural Networks -- 8.1 Data and A Priori Knowledge -- 8.2 Knowledge Incorporation in Neural Networks for Control -- 8.3 Fuzzy Knowledge Incorporation By Regularization -- 8.4 Fuzzy Knowledge as A Related Task in Learning -- 8.5 Simulation Studies -- 8.6 Summary -- 9. Fuzzy Preferences Incorporation into Multi-objective Optimization -- 9.1 Multi-objective Optimization and Preferences Handling -- 9.2 Evolutionary Dynamic Weighted Aggregation -- 9.3 Fuzzy Preferences Incorporation in MOO -- 9.4 Summary -- References. 
520 |a Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net­ works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil­ ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil­ ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted. 
650 0 |a Computer programming. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical logic. 
650 0 |a Data structures (Computer science). 
650 0 |a Algorithms. 
650 1 4 |a Programming Techniques.  |0 http://scigraph.springernature.com/things/product-market-codes/I14010 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Mathematical Logic and Foundations.  |0 http://scigraph.springernature.com/things/product-market-codes/M24005 
650 2 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783790815375 
776 0 8 |i Printed edition:  |z 9783790825206 
776 0 8 |i Printed edition:  |z 9783662003015 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 112 
856 4 0 |u https://doi.org/10.1007/978-3-7908-1771-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)