Theory and Practice of Uncertain Programming
Real-life decisions are usually made in the state of uncertainty (randomness, fuzziness, roughness, etc.). How do we model optimization problems in uncertain environments? How do we solve these models? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-d...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Heidelberg :
Physica-Verlag HD : Imprint: Physica,
2002.
|
Έκδοση: | 1st ed. 2002. |
Σειρά: | Studies in Fuzziness and Soft Computing,
102 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- I Fundamentals
- 1 Mathematical Programming
- 2 Genetic Algorithms
- 3 Neural Networks
- II Stochastic Programming
- 4 Random Variables
- 5 Stochastic Expected Value Models
- 6 Stochastic Chance-Constrained Programming
- 7 Stochastic Dependent-Chance Programming
- III Fuzzy Programming
- 8 Fuzzy Variables
- 9 Fuzzy Expected Value Models
- 10 Fuzzy Chance-Constrained Programming
- 11 Fuzzy Dependent-Chance Programming
- 12 Fuzzy Programming with Fuzzy Decisions
- IV Rough Programming
- 13 Rough Variables
- 14 Rough Programming
- V Fuzzy Random Programming
- 15 Fuzzy Random Variables
- 16 Fuzzy Random Expected Value Models
- 17 Fuzzy Random Chance-Constrained Programming
- 18 Fuzzy Random Dependent-Chance Programming
- VI Random Fuzzy Programming
- 19 Random Fuzzy Variables
- 20 Random Fuzzy Expected Value Models
- 21 Random Fuzzy Chance-Constrained Programming
- 22 Random Fuzzy Dependent-Chance Programming
- VII General Principle
- 23 Multifold Uncertainty
- 24 Uncertain Programming
- List of Acronyms
- List of Frequently Used Symbols.