Fuzzy Reasoning in Decision Making and Optimization

This book starts with the basic concepts of fuzzy arithmetics and progresses through the analysis of sup-t-norm-extended arithmetic operations, possibilistic linear systems and fuzzy reasoning approaches to fuzzy optimization. Four applications of (interdependent) fuzzy optimization and fuzzy reason...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Carlsson, Christer (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Fuller, Robert (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Studies in Fuzziness and Soft Computing, 82
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Fuzzy Sets and Fuzzy Logic
  • 1.1 Fuzzy sets
  • 1.2 Operations on fuzzy sets
  • 1.3 The extension principle
  • 1.4 t-norm-based operations on fuzzy numbers
  • 1.5 Product-sum of triangular fuzzy numbers
  • 1.6 Hamacher-sum of triangular fuzzy numbers
  • 1.7 t-norm-based addition of fuzzy numbers
  • 1.8 A functional relationship between t-norm-based addition and multiplication
  • 1.9 On generalization of Nguyen's theorems
  • 1.10 Measures of possibility and necessity
  • 1.11 A law of large numbers for fuzzy numbers
  • 1.12 Metrics for fuzzy numbers
  • 1.13 Possibilistic mean value and variance of fuzzy numbers
  • 1.14 Auxiliary lemmas
  • 1.15 Fuzzy implications
  • 1.16 Linguistic variables
  • 2. Fuzzy Multicriteria Decision Making
  • 2.1 Averaging operators
  • 2.2 Obtaining maximal entropy OWA operator weights
  • 2.3 OWA Operators for Ph.D. student selection
  • 2.4 Possibility and necessity in weighted aggregation
  • 2.5 Benchmarking in linguistic importance weighted aggregations
  • 3. Fuzzy Reasoning
  • 3.1 The theory of approximate reasoning
  • 3.2 Aggregation in fuzzy system modeling
  • 3.3 Multiple fuzzy reasoning schemes
  • 3.4 Some properties of the compositional rule of inference
  • 3.5 Computation of the compositional rule of inference under t-norms
  • 3.6 On the generalized method-of-case inference rule
  • 4. Fuzzy Optimization
  • 4.1 Possibilistic linear equality systems
  • 4.2 Sensitivity analysis of ãx = b? and ã?x = b??.
  • 4.3 Possibilistic systems with trapezoid fuzzy numbers
  • 4.4 Flexible linear programming
  • 4.5 Fuzzy linear programming with crisp relations
  • 4.6 Possibilistic linear programming
  • 4.7 Possibilistic quadratic programming
  • 4.8 Multiobjective possibilistic linear programming
  • 5. Fuzzy Reasoning for Fuzzy Optimization
  • 5.1 Fuzzy reasoning for FMP
  • 5.2 Optimization with linguistic variables
  • 5.3 Multiobjective optimization with lingusitic variables
  • 5.4 Interdependent multiple criteria decision making
  • 5.4.1 The linear case
  • 5.4.2 Application functions
  • 5.5 MOP with interdependent objectives
  • 5.6 Additive linear interdependences
  • 5.7 Additive nonlinear interdependences
  • 5.8 Compound interdependences
  • 5.9 Biobjective interdependent decision problems
  • 6. Applications in Management
  • 6.1 Nordic Paper Inc
  • 6.2 A fuzzy approach to real option valuation
  • 6.3 The Woodstrat project
  • 6.4 Soft computing methods for reducing the bullwhip effect
  • 6.4.1 The bullwhip effect, some additional details
  • 6.4.2 Explanations for the bullwhip effect: standard results
  • 6.4.3 Demand signal processing
  • 6.4.4 Order batching
  • 6.4.5 Price variations
  • 6.4.6 A fuzzy approach to demand signal processing
  • 6.4.7 A fuzzy logic controller to demand signal processing
  • 6.4.8 A hybrid soft computing platform for taming the bullwhip effect
  • 7. Future Trends in Fuzzy Reasoning and Decision Making
  • 7.1 Software agents and agent-based systems
  • 7.2 Intelligence and software agents
  • 7.3 Scenario agents
  • 7.4 Scenarios and scenario planning: key features
  • 7.5 Forecasting
  • 7.6 Industry foresight
  • 7.7 The scenario agent
  • 7.8 Interpretation agent
  • 7.9 Coping with imprecision
  • 7.10 Interpretation in a business environment
  • 7.11 Mental models and cognitive maps
  • 7.12 A preliminary description of an interpretation agent
  • 7.13 An interpretation agent: details.