Fuzzy Modeling and Control

In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectivene...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Piegat, Andrzej (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Studies in Fuzziness and Soft Computing, 69
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05002nam a2200541 4500
001 978-3-7908-1824-6
003 DE-He213
005 20191026031241.0
007 cr nn 008mamaa
008 121204s2001 gw | s |||| 0|eng d
020 |a 9783790818246  |9 978-3-7908-1824-6 
024 7 |a 10.1007/978-3-7908-1824-6  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Piegat, Andrzej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fuzzy Modeling and Control  |h [electronic resource] /  |c by Andrzej Piegat. 
250 |a 1st ed. 2001. 
264 1 |a Heidelberg :  |b Physica-Verlag HD :  |b Imprint: Physica,  |c 2001. 
300 |a XIV, 728 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 69 
505 0 |a 1. Introduction -- 1.1 Essence of fuzzy set theory -- 1.2 Development of fuzzy set theory -- 2. Basic Notions of Fuzzy Set Theory -- 2.1 Fuzzy sets -- 2.2 Characteristic parameters (indices) of a fuzzy set -- 2.3 Linguistic modifiers of fuzzy sets -- 2.4 Types of membership functions of fuzzy sets -- 2.5 Type 2 fuzzy sets -- 2.6 Fuzziness and probability: two kinds of uncertainty -- 3. Arithmetic of Fuzzy Sets -- 3.1 The extension principle -- 3.2 Addition of fuzzy numbers -- 3.3 Subtraction of fuzzy numbers -- 3.4 Multiplication of fuzzy numbers -- 3.5 Division of fuzzy numbers -- 3.6 Peculiarities of fuzzy numbers -- 3.7 Differences between fuzzy numbers and linguistic values -- 4. Mathematics of Fuzzy Sets -- 4.1 Basic operations on fuzzy sets -- 4.2 Fuzzy relations -- 4.3 Implication -- 5. Fuzzy Models -- 5.1 Structure, main elements and operations in fuzzy models -- 5.2 Significant features of rules, rule bases and fuzzy models -- 5.3 Advice relating to rule base construction -- 5.4 Reduction of the rule base -- 5.5 Normalization (scaling) of the fuzzy model inputs and output -- 5.6 Extrapolation in fuzzy models -- 5.7 Types of fuzzy models -- 6. Methods of Fuzzy Modeling -- 6.1 Fuzzy modeling based on the system expert's knowledge -- 6.2 Creation of fuzzy, self-tuning models based on input/output measurement data of the system -- 6.3 Creation of self-organizing and self-tuning fuzzy models based on input/output measurement data of the system -- 7. Fuzzy Control -- 7.1 Static fuzzy controllers -- 7.2 Dynamic fuzzy controllers -- 7.3 The determination of structures and parameters for fuzzy controllers (organization and tuning) -- 8. The Stability of Fuzzy Control Systems -- 8.1 The stability of fuzzy control systems with unknown models of plants -- 8.2 The circle stability criterion -- 8.3 The application of hyperstability theory to analysis of fuzzysystem stability -- References. 
520 |a In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology. 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 0 |a Data structures (Computer science). 
650 0 |a Computers. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Control and Systems Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/T19010 
650 2 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Information Systems and Communication Service.  |0 http://scigraph.springernature.com/things/product-market-codes/I18008 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783790824865 
776 0 8 |i Printed edition:  |z 9783790813852 
776 0 8 |i Printed edition:  |z 9783662003572 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 69 
856 4 0 |u https://doi.org/10.1007/978-3-7908-1824-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)