Deep Fusion of Computational and Symbolic Processing
Symbolic processing has limitations highlighted by the symbol grounding problem. Computational processing methods, like fuzzy logic, neural networks, and statistical methods have appeared to overcome these problems. However, they also suffer from drawbacks in that, for example, multi-stage inference...
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
---|---|
Άλλοι συγγραφείς: | Furuhashi, Takeshi (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Tano, Shun'Ichi (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Jacobsen, Hans-Arno (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Heidelberg :
Physica-Verlag HD : Imprint: Physica,
2001.
|
Έκδοση: | 1st ed. 2001. |
Σειρά: | Studies in Fuzziness and Soft Computing,
59 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Deep Learning with R
ανά: Ghatak, Abhijit, κ.ά.
Έκδοση: (2019) -
Deep Reinforcement Learning Frontiers of Artificial Intelligence /
ανά: Sewak, Mohit, κ.ά.
Έκδοση: (2019) -
Inductive Logic Programming 7th International Workshop, ILP-97, Prague, Czech Republic, September 17-20, 1997, Proceedings /
Έκδοση: (1997) -
Inductive Logic Programming 10th International Conference, ILP 2000, London, UK, July 24-27, 2000 Proceedings /
Έκδοση: (2000) -
Inductive Logic Programming 9th International Workshop, ILP-99, Bled, Slovenia, June 24-27, 1999, Proceedings /
Έκδοση: (1999)