Soft Computing in Information Retrieval Techniques and Applications /

Information retrieval (IR) aims at defining systems able to provide a fast and effective content-based access to a large amount of stored information. The aim of an IR system is to estimate the relevance of documents to users' information needs, expressed by means of a query. This is a very dif...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Crestani, Fabio (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Pasi, Gabriella (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Studies in Fuzziness and Soft Computing, 50
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04471nam a2200553 4500
001 978-3-7908-1849-9
003 DE-He213
005 20191025012050.0
007 cr nn 008mamaa
008 130321s2000 gw | s |||| 0|eng d
020 |a 9783790818499  |9 978-3-7908-1849-9 
024 7 |a 10.1007/978-3-7908-1849-9  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
245 1 0 |a Soft Computing in Information Retrieval  |h [electronic resource] :  |b Techniques and Applications /  |c edited by Fabio Crestani, Gabriella Pasi. 
250 |a 1st ed. 2000. 
264 1 |a Heidelberg :  |b Physica-Verlag HD :  |b Imprint: Physica,  |c 2000. 
300 |a XII, 396 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 50 
505 0 |a I. Fuzzy Set Theory -- A Framework for Linguistic and Hierarchical Queries in Document Retrieval -- Application of Fuzzy Set Theory to Extend Boolean Information Retrieval -- A Model of Intelligent Information Retrieval Using Fuzzy Tolerance Relations Based on Hierarchical Co-Occurrence of Words -- II. Neural Networks -- Visual Keywords: from Text Retrieval to Multimedia Retrieval -- Document Classification with Unsupervised Artificial Neural Networks -- The Java Search Agent Workshop -- A Connectionist Approach to Content Access in Documents: Application to Detection of Jokes -- III. Genetic Algorithms -- Connectionist and Genetic Approaches for Information Retrieval -- Large Population or Many Generations for Genetic Algorithms? Implications in Information Retrieval -- IV. Evidential and Probabilistic Reasoning -- A Logical Information Retrieval Model Based on a Combination of Propositional Logic and Probability Theory -- Bayesian Network Models for Information Retrieval -- Probabilistic Learning by Uncertainty Sampling with Non-Binary Relevance -- V. Rough Sets Theory, Multivalued Logics, and Other Approaches -- Granulär Information Retrieval -- A Framework for the Retrieval of Multimedia Objects Based on Four-Valued Fuzzy Description Logics -- Rough and Fuzzy Sets for Data Mining of a Controlled Vocabulary for Textual Retrieval -- Rough Sets and Multisets in a Model of Information Retrieval. 
520 |a Information retrieval (IR) aims at defining systems able to provide a fast and effective content-based access to a large amount of stored information. The aim of an IR system is to estimate the relevance of documents to users' information needs, expressed by means of a query. This is a very difficult and complex task, since it is pervaded with imprecision and uncertainty. Most of the existing IR systems offer a very simple model of IR, which privileges efficiency at the expense of effectiveness. A promising direction to increase the effectiveness of IR is to model the concept of "partially intrinsic" in the IR process and to make the systems adaptive, i.e. able to "learn" the user's concept of relevance. To this aim, the application of soft computing techniques can be of help to obtain greater flexibility in IR systems. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 0 |a Information technology. 
650 0 |a Business-Data processing. 
650 1 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a IT in Business.  |0 http://scigraph.springernature.com/things/product-market-codes/522000 
700 1 |a Crestani, Fabio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pasi, Gabriella.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783790824735 
776 0 8 |i Printed edition:  |z 9783790812992 
776 0 8 |i Printed edition:  |z 9783662003831 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 50 
856 4 0 |u https://doi.org/10.1007/978-3-7908-1849-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)