Fuzzy Classifier Design

Fuzzy sets were first proposed by Lotfi Zadeh in his seminal paper [366] in 1965, and ever since have been a center of many discussions, fervently admired and condemned. Both proponents and opponents consider the argu­ ments pointless because none of them would step back from their territory. And st...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kuncheva, Ludmila I. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Studies in Fuzziness and Soft Computing, 49
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05833nam a2200589 4500
001 978-3-7908-1850-5
003 DE-He213
005 20191021181748.0
007 cr nn 008mamaa
008 121116s2000 gw | s |||| 0|eng d
020 |a 9783790818505  |9 978-3-7908-1850-5 
024 7 |a 10.1007/978-3-7908-1850-5  |2 doi 
040 |d GrThAP 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Kuncheva, Ludmila I.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fuzzy Classifier Design  |h [electronic resource] /  |c by Ludmila I. Kuncheva. 
250 |a 1st ed. 2000. 
264 1 |a Heidelberg :  |b Physica-Verlag HD :  |b Imprint: Physica,  |c 2000. 
300 |a X, 315 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 49 
505 0 |a 1. Introduction -- 1.1 What are fuzzy classifiers? -- 1.2 The data sets used in this book -- 1.3 Notations and acronyms -- 1.4 Organization of the book -- 1.5 Acknowledgements -- 2. Statistical pattern recognition -- 2.1 Class, feature, feature space -- 2.2 Classifier, discriminant functions, classification regions -- 2.3 Clustering -- 2.4 Prior probabilities, class-conditional probability density functions, posterior probabilities -- 2.5 Minimum error and minimum risk classification. Loss matrix -- 2.6 Performance estimation -- 2.7 Experimental comparison of classifiers -- 2.8 A taxonomy of classifier design methods -- 3. Statistical classifiers -- 3.1 Parametric classifiers -- 3.2 Nonparametric classifiers -- 3.3 Finding k-nn prototypes -- 3.4 Neural networks -- 4. Fuzzy sets -- 4.1 Fuzzy logic, an oxymoron? -- 4.2 Basic definitions -- 4.3 Operations on fuzzy sets -- 4.4 Determining membership functions -- 5. Fuzzy if-then classifiers -- 5.1 Fuzzy if-then systems -- 5.2 Function approximation with fuzzy if-then systems -- 5.3 Fuzzy if-then classifiers -- 5.4 Universal approximation and equivalences of fuzzy if-then classifiers -- 6. Training of fuzzy if-then classifiers -- 6.1 Expert opinion or data analysis? -- 6.2 Tuning the consequents -- 6.3 Toning the antecedents -- 6.4 Tuning antecedents and consequents using clustering -- 6.5 Genetic algorithms for tuning fuzzy if-then classifiers -- 6.6 Fuzzy classifiers and neural networks: hybridization or identity? -- 6.7 Forget interpretability and choose a model -- 7. Non if-then fuzzy models -- 7.1 Early ideas -- 7.2 Fuzzy k-nearest neighbors (k-nn) designs -- 7.3 Generalized nearest prototype classifier (GNPC) -- 8. Combinations of multiple classifiers using fuzzy sets -- 8.1 Combining classifiers: the variety of paradigms -- 8.2 Classifier selection -- 8.3 Classifier fusion -- 8.4 Experimental results -- 9. Conclusions: What to choose? -- A. Appendix: Numerical results -- A.1 Cone-torus data -- A.2 Normal mixtures data. -- A.3 Phoneme data -- A.4 Satimage data -- References. 
520 |a Fuzzy sets were first proposed by Lotfi Zadeh in his seminal paper [366] in 1965, and ever since have been a center of many discussions, fervently admired and condemned. Both proponents and opponents consider the argu­ ments pointless because none of them would step back from their territory. And stiH, discussions burst out from a single sparkle like a conference pa­ per or a message on some fuzzy-mail newsgroup. Here is an excerpt from an e-mail messagepostedin1993tofuzzy-mail@vexpert. dbai. twvien. ac. at. by somebody who signed "Dave". , . . . Why then the "logic" in "fuzzy logic"? I don't think anyone has successfully used fuzzy sets for logical inference, nor do I think anyone wiH. In my admittedly neophyte opinion, "fuzzy logic" is a misnomer, an oxymoron. (1 would be delighted to be proven wrong on that. ) . . . I carne to the fuzzy literature with an open mind (and open wal­ let), high hopes and keen interest. I am very much disiHusioned with "fuzzy" per se, but I did happen across some extremely interesting things along the way. " Dave, thanks for the nice quote! Enthusiastic on the surface, are not many of us suspicious deep down? In some books and journals the word fuzzy is religiously avoided: fuzzy set theory is viewed as a second-hand cheap trick whose aim is nothing else but to devalue good classical theories and open up the way to lazy ignorants and newcomers. 
650 0 |a Pattern recognition. 
650 0 |a Mathematical logic. 
650 0 |a Data structures (Computer science). 
650 0 |a Artificial intelligence. 
650 0 |a Information technology. 
650 0 |a Business-Data processing. 
650 1 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Mathematical Logic and Foundations.  |0 http://scigraph.springernature.com/things/product-market-codes/M24005 
650 2 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a IT in Business.  |0 http://scigraph.springernature.com/things/product-market-codes/522000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783790824728 
776 0 8 |i Printed edition:  |z 9783790812985 
776 0 8 |i Printed edition:  |z 9783662003848 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 49 
856 4 0 |u https://doi.org/10.1007/978-3-7908-1850-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)