Fuzzy Classifier Design
Fuzzy sets were first proposed by Lotfi Zadeh in his seminal paper [366] in 1965, and ever since have been a center of many discussions, fervently admired and condemned. Both proponents and opponents consider the argu ments pointless because none of them would step back from their territory. And st...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Heidelberg :
Physica-Verlag HD : Imprint: Physica,
2000.
|
Έκδοση: | 1st ed. 2000. |
Σειρά: | Studies in Fuzziness and Soft Computing,
49 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Introduction
- 1.1 What are fuzzy classifiers?
- 1.2 The data sets used in this book
- 1.3 Notations and acronyms
- 1.4 Organization of the book
- 1.5 Acknowledgements
- 2. Statistical pattern recognition
- 2.1 Class, feature, feature space
- 2.2 Classifier, discriminant functions, classification regions
- 2.3 Clustering
- 2.4 Prior probabilities, class-conditional probability density functions, posterior probabilities
- 2.5 Minimum error and minimum risk classification. Loss matrix
- 2.6 Performance estimation
- 2.7 Experimental comparison of classifiers
- 2.8 A taxonomy of classifier design methods
- 3. Statistical classifiers
- 3.1 Parametric classifiers
- 3.2 Nonparametric classifiers
- 3.3 Finding k-nn prototypes
- 3.4 Neural networks
- 4. Fuzzy sets
- 4.1 Fuzzy logic, an oxymoron?
- 4.2 Basic definitions
- 4.3 Operations on fuzzy sets
- 4.4 Determining membership functions
- 5. Fuzzy if-then classifiers
- 5.1 Fuzzy if-then systems
- 5.2 Function approximation with fuzzy if-then systems
- 5.3 Fuzzy if-then classifiers
- 5.4 Universal approximation and equivalences of fuzzy if-then classifiers
- 6. Training of fuzzy if-then classifiers
- 6.1 Expert opinion or data analysis?
- 6.2 Tuning the consequents
- 6.3 Toning the antecedents
- 6.4 Tuning antecedents and consequents using clustering
- 6.5 Genetic algorithms for tuning fuzzy if-then classifiers
- 6.6 Fuzzy classifiers and neural networks: hybridization or identity?
- 6.7 Forget interpretability and choose a model
- 7. Non if-then fuzzy models
- 7.1 Early ideas
- 7.2 Fuzzy k-nearest neighbors (k-nn) designs
- 7.3 Generalized nearest prototype classifier (GNPC)
- 8. Combinations of multiple classifiers using fuzzy sets
- 8.1 Combining classifiers: the variety of paradigms
- 8.2 Classifier selection
- 8.3 Classifier fusion
- 8.4 Experimental results
- 9. Conclusions: What to choose?
- A. Appendix: Numerical results
- A.1 Cone-torus data
- A.2 Normal mixtures data.
- A.3 Phoneme data
- A.4 Satimage data
- References.