Fuzzy Classifier Design

Fuzzy sets were first proposed by Lotfi Zadeh in his seminal paper [366] in 1965, and ever since have been a center of many discussions, fervently admired and condemned. Both proponents and opponents consider the argu­ ments pointless because none of them would step back from their territory. And st...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kuncheva, Ludmila I. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Studies in Fuzziness and Soft Computing, 49
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Introduction
  • 1.1 What are fuzzy classifiers?
  • 1.2 The data sets used in this book
  • 1.3 Notations and acronyms
  • 1.4 Organization of the book
  • 1.5 Acknowledgements
  • 2. Statistical pattern recognition
  • 2.1 Class, feature, feature space
  • 2.2 Classifier, discriminant functions, classification regions
  • 2.3 Clustering
  • 2.4 Prior probabilities, class-conditional probability density functions, posterior probabilities
  • 2.5 Minimum error and minimum risk classification. Loss matrix
  • 2.6 Performance estimation
  • 2.7 Experimental comparison of classifiers
  • 2.8 A taxonomy of classifier design methods
  • 3. Statistical classifiers
  • 3.1 Parametric classifiers
  • 3.2 Nonparametric classifiers
  • 3.3 Finding k-nn prototypes
  • 3.4 Neural networks
  • 4. Fuzzy sets
  • 4.1 Fuzzy logic, an oxymoron?
  • 4.2 Basic definitions
  • 4.3 Operations on fuzzy sets
  • 4.4 Determining membership functions
  • 5. Fuzzy if-then classifiers
  • 5.1 Fuzzy if-then systems
  • 5.2 Function approximation with fuzzy if-then systems
  • 5.3 Fuzzy if-then classifiers
  • 5.4 Universal approximation and equivalences of fuzzy if-then classifiers
  • 6. Training of fuzzy if-then classifiers
  • 6.1 Expert opinion or data analysis?
  • 6.2 Tuning the consequents
  • 6.3 Toning the antecedents
  • 6.4 Tuning antecedents and consequents using clustering
  • 6.5 Genetic algorithms for tuning fuzzy if-then classifiers
  • 6.6 Fuzzy classifiers and neural networks: hybridization or identity?
  • 6.7 Forget interpretability and choose a model
  • 7. Non if-then fuzzy models
  • 7.1 Early ideas
  • 7.2 Fuzzy k-nearest neighbors (k-nn) designs
  • 7.3 Generalized nearest prototype classifier (GNPC)
  • 8. Combinations of multiple classifiers using fuzzy sets
  • 8.1 Combining classifiers: the variety of paradigms
  • 8.2 Classifier selection
  • 8.3 Classifier fusion
  • 8.4 Experimental results
  • 9. Conclusions: What to choose?
  • A. Appendix: Numerical results
  • A.1 Cone-torus data
  • A.2 Normal mixtures data.
  • A.3 Phoneme data
  • A.4 Satimage data
  • References.