Fuzzy and Neuro-Fuzzy Intelligent Systems

Intelligence systems. We perfonn routine tasks on a daily basis, as for example: • recognition of faces of persons (also faces not seen for many years), • identification of dangerous situations during car driving, • deciding to buy or sell stock, • reading hand-written symbols, • discriminating betw...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Czogala, Ernest (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Leski, Jacek (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Studies in Fuzziness and Soft Computing, 47
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Classical sets and fuzzy sets Basic definitions and terminology
  • 1.1 Classical sets
  • 1.2 Fuzzy sets
  • 1.3 Operations on fuzzy sets
  • 1.4 Classification of t-norms and t-conorms
  • 1.5 De Morgan triple and other properties of t- and s-norms
  • 1.6 Parameterized t-, s-norms and negations
  • 1.7 Fuzzy relations
  • 1.8 Cylindrical extension and projection of fuzzy sets
  • 1.9 Extension principle
  • 1.10 Linguistic variable
  • 1.11 Summary
  • Bibliographical notes
  • 2 Approximate reasoning
  • 2.1 Interpretation of fuzzy conditional statement
  • 2.2 An approach to axiomatic definition of fuzzy implication
  • 2.3 Compositional rule of inference
  • 2.4 Fuzzy reasoning
  • 2.5 Canonical fuzzy if-then rule
  • 2.6 Aggregation operation
  • 2.7 Approximate reasoning using a fuzzy rule base
  • 2.8 Approximate reasoning with singletons
  • 2.9 Fuzzifiers and defuzzifiers
  • 2.10 Equivalence of approximate reasoning results using different interpretations of if-then rules
  • 2.11 Numerical results
  • 2.12 Summary
  • Bibliographical notes
  • 3 Artificial neural networks
  • 3.1 Introduction
  • 3.2 Artificial neural networks topologies
  • 3.3 Learning in artificial neural networks
  • 3.4 Back-propagation learning rule
  • 3.5 Modifications of the classic back-propagation method
  • 3.6 Optimization methods in neural networks learning
  • 3.7 Networks with output linearly depending on parameters
  • 3.8 Global optimization methods
  • 3.9 Summary
  • Bibliographical notes
  • 4 Unsupervised learning Clustering methods
  • 4.1 Introduction
  • 4.2 Self-organizing feature map
  • 4.3 Vector quantization and learning vector quantization
  • 4.4 An overview of clustering methods
  • 4.5 Fuzzy clustering methods
  • 4.6 A possibilistic approach to clustering
  • 4.7 New generalized weighted conditional fuzzy c-means
  • 4.8 Fuzzy learning vector quantization
  • 4.9 Cluster validity
  • 4.10 Summary
  • Bibliographical notes
  • 5 Fuzzy systems
  • 5.1 Introduction
  • 5.2 The Mamdani fuzzy systems
  • 5.3 The Takagi-Sugeno-Kang fuzzy systems
  • 5.4 Fuzzy systems with parameterized consequents
  • 5.5 Summary
  • Bibliographical notes
  • 6 Neuro-fuzzy systems
  • 6.1 Introduction
  • 6.2 Artificial neural network based fuzzy inference system
  • 6.3 Classifier based on neuro-fuzzy system
  • 6.4 ANNBFIS optimization using deterministic annealing
  • 6.5 Further investigations of neuro-fuzzy systems
  • 6.6 Summary
  • Bibliographical notes
  • Appendix A: Artificial neural network based fuzzy inference systema MATLAB implementation
  • Appendix B: Proof of classifier learning convergence
  • 7 Applications of artificial neural network based fuzzy inference system
  • 7.1 Introduction
  • 7.2 Application to chaotic time series prediction
  • 7.3 Application to ECG signal compression
  • 7.4 Application to Ripley's synthetic two-class data classification
  • 7.5 Application to the recognition of diabetes in Pima Indians
  • 7.6 Application to the iris problem
  • 7.7 Application to Monk's problems
  • 7.8 Application to system identification
  • 7.9 Application to control
  • 7.10 Application to channel equalization
  • 7.11 Summary
  • Biographical notes
  • References
  • List of notations and abbreviations.