Soft Computing for Image Processing

Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Pal, Sankar K. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Ghosh, Ashish (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Kundu, Malay K. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Studies in Fuzziness and Soft Computing, 42
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05084nam a2200577 4500
001 978-3-7908-1858-1
003 DE-He213
005 20191024202306.0
007 cr nn 008mamaa
008 130321s2000 gw | s |||| 0|eng d
020 |a 9783790818581  |9 978-3-7908-1858-1 
024 7 |a 10.1007/978-3-7908-1858-1  |2 doi 
040 |d GrThAP 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Soft Computing for Image Processing  |h [electronic resource] /  |c edited by Sankar K. Pal, Ashish Ghosh, Malay K. Kundu. 
250 |a 1st ed. 2000. 
264 1 |a Heidelberg :  |b Physica-Verlag HD :  |b Imprint: Physica,  |c 2000. 
300 |a XVII, 591 p. 332 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 42 
505 0 |a Soft Computing and Image Analysis : Features, Relevance and Hybridization -- 1. Preprocessing and Feature Extraction -- Image Filtering Using Evolutionary Neural Fuzzy Systems -- Edge Extraction Using Fuzzy Reasoning -- Image Compression and Edge Extraction Using Fractal Technique and Genetic Algorithm -- Adaptive Clustering for Effiicient Segmentation and Vector Quantization of Images -- On Fuzzy Thresholding of Remotely Sensed Images -- Image Compression Using Pixel Neural Networks -- Genetic Algorithm and Fuzzy Reasoning for Digital Image Compression Using Triangular Plane Patches -- Compression of Digital Mammograms Using Wavelets and Fuzzy Algorithms for Learning Vector Quantization -- Soft Computing and Image Analysis -- Fuzzy Interpretation of Image Data -- 2. Classification -- New Pattern Recognition Tools Based on Fuzzy Logic for Image Understanding -- Adaptive, Evolving, Hybrid Connectionist Systems for Image Pattern Recognition -- Neuro-Fuzzy Computing: Structure, Performance Measure and Applications -- Knowledge Reuse Mechanisms for Categorizing Related Image Sets -- Symbolic Data Analysis for Image Processing -- 3. Applications -- The Use of Artificial Neural Networks for Automatic Target Recognition -- Hybrid Systems for Facial Analysis and Processing Tasks -- Handwritten Digit Recognition Using Soft Computing Tools -- Neural Systems for Motion Analysis : Single Neuron and Network Approaches -- Motion Estimation and Compensation with Neural Fuzzy Systems -- About the Editors. 
520 |a Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc. 
650 0 |a Optical data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Information technology. 
650 0 |a Business-Data processing. 
650 1 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a IT in Business.  |0 http://scigraph.springernature.com/things/product-market-codes/522000 
700 1 |a Pal, Sankar K.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ghosh, Ashish.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kundu, Malay K.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783790824681 
776 0 8 |i Printed edition:  |z 9783662003930 
776 0 8 |i Printed edition:  |z 9783790812688 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 42 
856 4 0 |u https://doi.org/10.1007/978-3-7908-1858-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)