Logical Structures for Representation of Knowledge and Uncertainty

To answer questions concerning previously supplied information the book uses a truth table or 'chain set' logic which combines probabilities with truth values (= possibilities of fuzzy set theory). Answers to questions can be 1 (yes); 0 (no); m (a fraction in the case of uncertain informat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hisdal, Ellen (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 1998.
Έκδοση:1st ed. 1998.
Σειρά:Studies in Fuzziness and Soft Computing, 14
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04399nam a2200541 4500
001 978-3-7908-1887-1
003 DE-He213
005 20191026212222.0
007 cr nn 008mamaa
008 130321s1998 gw | s |||| 0|eng d
020 |a 9783790818871  |9 978-3-7908-1887-1 
024 7 |a 10.1007/978-3-7908-1887-1  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBC  |2 thema 
072 7 |a PBCD  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Hisdal, Ellen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Logical Structures for Representation of Knowledge and Uncertainty  |h [electronic resource] /  |c by Ellen Hisdal. 
250 |a 1st ed. 1998. 
264 1 |a Heidelberg :  |b Physica-Verlag HD :  |b Imprint: Physica,  |c 1998. 
300 |a XXIV, 420 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 14 
505 0 |a BP Logic -- Chain Set and Probability Overview -- BP Chain Sets I, Affirmation, Negation, Conjunction, Disjunction -- BP Chain Sets II, Special Cases of Chain Sets -- BP Chain Sets III, Precise Formulations -- Inferences or the Answering of Questions -- Inferences with Higher Level Chain Sets -- IF THEN Information -- Various IF THEN Topics -- M Logic -- The M-Notation and Ignorance vs Uncertainty -- Two Types of Updating of Probabilities -- Operations and Ignorance in the M Logic -- Modus Ponens and Existence Updating -- IF THEN Information in the M Logic -- Existence Structures -- Existence Inferences -- Conditional and Joint Existence Information and Inferences -- Attributes and The Alex System versus Chain Sets -- Attributes and the Alex System versus Chain Sets -- Solutions to Some Exercises. 
520 |a To answer questions concerning previously supplied information the book uses a truth table or 'chain set' logic which combines probabilities with truth values (= possibilities of fuzzy set theory). Answers to questions can be 1 (yes); 0 (no); m (a fraction in the case of uncertain information); 0m, m1 or 0m1 (in the case of 'ignorance' or insufficient information). Ignorance (concerning the values of a probability distribution) is differentiated from uncertainty (concerning the occurrence of an outcome). An IF THEN statement is interpreted as specifying a conditional probability value. No predicate calculus is needed in this probability logic which is built on top of a yes-no logic. Quantification sentences are represented as IF THEN sentences with variables. No 'forall' and 'exist' symbols are needed. This simplifies the processing of information. Strange results of first order logic are more reasonable in the chain set logic. E.g., (p->q) AND (p->NOTq), p->NOT p, (p->q)->(p->NOT q), (p->q)- >NOT(p->q), are contradictory or inconsistent statements only in the chain set logic. Depending on the context, two different rules for the updating of probabilities are shown to exist. The first rule applies to the updating of IF THEN information by new IF THEN information. The second rule applies to other cases, including modus ponens updating. It corresponds to the truth table of the AND connective in propositional calculus. Many examples of inferences are given throughout the book. 
650 0 |a Mathematical logic. 
650 0 |a Artificial intelligence. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 1 4 |a Mathematical Logic and Foundations.  |0 http://scigraph.springernature.com/things/product-market-codes/M24005 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Operations Research/Decision Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/521000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783790824582 
776 0 8 |i Printed edition:  |z 9783790810561 
776 0 8 |i Printed edition:  |z 9783662123881 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 14 
856 4 0 |u https://doi.org/10.1007/978-3-7908-1887-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)