Lp-Theory of Cylindrical Boundary Value Problems An Operator-Valued Fourier Multiplier and Functional Calculus Approach /
Tobias Nau addresses initial boundary value problems in cylindrical space domains with the aid of modern techniques from functional analysis and operator theory. In particular, the author uses concepts from Fourier analysis of functions with values in Banach spaces and the operator-valued functional...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Wiesbaden :
Vieweg+Teubner Verlag,
2012.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Fourier Transform and Fourier Series
- Operator-valued Fourier multipliers and functional calculus
- Maximal Lp-Regularity
- Parameter-Elliptic Boundary Value Problems in Cylindrical Domains
- Periodic and Mixed Dirichlet-Neumann Boundary Conditions for the Laplacian
- Stokes Problem and Helmholtz Projection in Rectangular Cylinders.