PT-Symmetric Schrödinger Operators with Unbounded Potentials

Following the pioneering work of Carl M. Bender et al. (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum wa...

Full description

Bibliographic Details
Main Author: Nesemann, Jan (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Wiesbaden : Vieweg+Teubner, 2011.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02419nam a22004095i 4500
001 978-3-8348-8327-8
003 DE-He213
005 20151204181920.0
007 cr nn 008mamaa
008 110728s2011 gw | s |||| 0|eng d
020 |a 9783834883278  |9 978-3-8348-8327-8 
024 7 |a 10.1007/978-3-8348-8327-8  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Nesemann, Jan.  |e author. 
245 1 0 |a PT-Symmetric Schrödinger Operators with Unbounded Potentials  |h [electronic resource] /  |c by Jan Nesemann. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner,  |c 2011. 
300 |a VIII, 83 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Following the pioneering work of Carl M. Bender et al. (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum was considered a surprise and many examples of such potentials were studied in the sequel. From a mathematical point of view, however, this is no surprise at all – provided one is familiar with the theory of self-adjoint operators in Krein spaces. Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues or, more generally, between separated parts of the spectrum. 
650 0 |a Mathematics. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834817624 
856 4 0 |u http://dx.doi.org/10.1007/978-3-8348-8327-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)