Lectures on Algebraic Geometry I Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Harder, Günter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2011.
Έκδοση:2nd revised Edition.
Σειρά:Aspects of Mathematics, 35
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02188nam a22004575i 4500
001 978-3-8348-8330-8
003 DE-He213
005 20140402093548.0
007 cr nn 008mamaa
008 140312s2011 gw | s |||| 0|eng d
020 |a 9783834883308  |9 978-3-8348-8330-8 
024 7 |a 10.1007/978-3-8348-8330-8  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Harder, Günter.  |e author. 
245 1 0 |a Lectures on Algebraic Geometry I  |h [electronic resource] :  |b Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /  |c by Günter Harder. 
250 |a 2nd revised Edition. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2011. 
300 |a XIII, 301 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Aspects of Mathematics,  |x 0179-2156 ;  |v 35 
520 |a This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834818447 
830 0 |a Aspects of Mathematics,  |x 0179-2156 ;  |v 35 
856 4 0 |u http://dx.doi.org/10.1007/978-3-8348-8330-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)