Shape Optimization under Uncertainty from a Stochastic Programming Point of View

Optimization problems are relevant in many areas of technical, industrial, and economic applications. At the same time, they pose challenging mathematical research problems in numerical analysis and optimization. Harald Held considers an elastic body subjected to uncertain internal and external forc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Held, Harald (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Vieweg+Teubner, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02692nam a22004455i 4500
001 978-3-8348-9396-3
003 DE-He213
005 20151204153906.0
007 cr nn 008mamaa
008 100530s2009 gw | s |||| 0|eng d
020 |a 9783834893963  |9 978-3-8348-9396-3 
024 7 |a 10.1007/978-3-8348-9396-3  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Held, Harald.  |e author. 
245 1 0 |a Shape Optimization under Uncertainty from a Stochastic Programming Point of View  |h [electronic resource] /  |c by Harald Held. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner,  |c 2009. 
300 |a 148 p. 39 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Solution of the Elasticity PDE -- Stochastic Programming Perspective -- Solving Shape Optimization Problems -- Numerical Results. 
520 |a Optimization problems are relevant in many areas of technical, industrial, and economic applications. At the same time, they pose challenging mathematical research problems in numerical analysis and optimization. Harald Held considers an elastic body subjected to uncertain internal and external forces. Since simply averaging the possible loadings will result in a structure that might not be robust for the individual loadings, he uses techniques from level set based shape optimization and two-stage stochastic programming. Taking advantage of the PDE’s linearity, he is able to compute solutions for an arbitrary number of scenarios without significantly increasing the computational effort. The author applies a gradient method using the shape derivative and the topological gradient to minimize, e.g., the compliance . and shows that the obtained solutions strongly depend on the initial guess, in particular its topology. The stochastic programming perspective also allows incorporating risk measures into the model which might be a more appropriate objective in many practical applications. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834809094 
856 4 0 |u http://dx.doi.org/10.1007/978-3-8348-9396-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)