Representations of Linear Groups An Introduction Based on Examples from Physics and Number Theory /

This is an elementary introduction to the representation theory of real and complex matrix groups. The text is written for students in mathematics and physics who have a good knowledge of differential/integral calculus and linear algebra and are familiar with basic facts from algebra, number theory...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Berndt, Rolf (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Vieweg, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03080nam a22004815i 4500
001 978-3-8348-9401-4
003 DE-He213
005 20151204191137.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783834894014  |9 978-3-8348-9401-4 
024 7 |a 10.1007/978-3-8348-9401-4  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Berndt, Rolf.  |e author. 
245 1 0 |a Representations of Linear Groups  |h [electronic resource] :  |b An Introduction Based on Examples from Physics and Number Theory /  |c by Rolf Berndt. 
264 1 |a Wiesbaden :  |b Vieweg,  |c 2007. 
300 |a XII, 271 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Prologue: Some Groups and their Actions -- Basic Algebraic Concepts for Group Representations -- Representations of Finite Groups -- Continuous Representations -- Representations of Compact Groups -- Representations of Abelian Groups -- The Infinitesimal Method -- Induced Representations -- Geometric Quantization and the Orbit Method -- Epilogue: Outlook to Number Theory. 
520 |a This is an elementary introduction to the representation theory of real and complex matrix groups. The text is written for students in mathematics and physics who have a good knowledge of differential/integral calculus and linear algebra and are familiar with basic facts from algebra, number theory and complex analysis. The goal is to present the fundamental concepts of representation theory, to describe the connection between them, and to explain some of their background. The focus is on groups which are of particular interest for applications in physics and number theory (e.g. Gell-Mann's eightfold way and theta functions, automorphic forms). The reader finds a large variety of examples which are presented in detail and from different points of view. The examples motivate the general theory well covered already by the existing literature. Hence for complete proofs of most of the essential statements and theorems the reader is often referred to the standard sources. Plenty of exercises are included in the text. Some of these exercises and/or omitted proofs may give a starting point for a bachelor thesis and further studies in a master program. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Matrix theory. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Algebra. 
650 2 4 |a Number Theory. 
650 2 4 |a Group Theory and Generalizations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834803191 
856 4 0 |u http://dx.doi.org/10.1007/978-3-8348-9401-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)