Lectures on Algebraic Geometry I Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Harder, Günter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Vieweg+Teubner, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02216nam a22004335i 4500
001 978-3-8348-9501-1
003 DE-He213
005 20151204153852.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783834895011  |9 978-3-8348-9501-1 
024 7 |a 10.1007/978-3-8348-9501-1  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Harder, Günter.  |e author. 
245 1 0 |a Lectures on Algebraic Geometry I  |h [electronic resource] :  |b Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /  |c by Günter Harder. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner,  |c 2008. 
300 |a VIII, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Categories, products, Projective and Inductive Limits -- Basic Concepts of Homological Algebra -- Sheaves -- Cohomology of Sheaves -- Compact Riemann surfaces and Abelian Varieties. 
520 |a This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783528031367 
856 4 0 |u http://dx.doi.org/10.1007/978-3-8348-9501-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)