Numerical solution of Variational Inequalities by Adaptive Finite Elements

Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Suttmeier, Franz-Theo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Vieweg+Teubner, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02826nam a22004335i 4500
001 978-3-8348-9546-2
003 DE-He213
005 20151204164410.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783834895462  |9 978-3-8348-9546-2 
024 7 |a 10.1007/978-3-8348-9546-2  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Suttmeier, Franz-Theo.  |e author. 
245 1 0 |a Numerical solution of Variational Inequalities by Adaptive Finite Elements  |h [electronic resource] /  |c by Franz-Theo Suttmeier. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner,  |c 2008. 
300 |a X, 161 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Models in elasto-plasticity -- The dual-weighted-residual method -- Extensions to stabilised schemes -- Obstacle problem -- Signorini’s problem -- Strang’s problem -- General concept -- Lagrangian formalism -- Obstacle problem revisited -- Variational inequalities of second kind -- Time-dependent problems -- Applications -- Iterative Algorithms -- Conclusion. 
520 |a Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a numerically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored according to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities. 
650 0 |a Mathematics. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834806642 
856 4 0 |u http://dx.doi.org/10.1007/978-3-8348-9546-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)