Bootstrapping Stationary ARMA-GARCH Models

Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shimizu, Kenichi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Vieweg+Teubner, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02562nam a22004695i 4500
001 978-3-8348-9778-7
003 DE-He213
005 20151204184732.0
007 cr nn 008mamaa
008 101031s2010 gw | s |||| 0|eng d
020 |a 9783834897787  |9 978-3-8348-9778-7 
024 7 |a 10.1007/978-3-8348-9778-7  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Shimizu, Kenichi.  |e author. 
245 1 0 |a Bootstrapping Stationary ARMA-GARCH Models  |h [electronic resource] /  |c by Kenichi Shimizu. 
264 1 |a Wiesbaden :  |b Vieweg+Teubner,  |c 2010. 
300 |a 148 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Bootstrap Does not Always Work -- Parametric AR(p)-ARCH(q) Models -- Parametric ARMA(p, q)- GARCH(r, s) Models -- Semiparametric AR(p)-ARCH(1) Models. 
520 |a Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to take too much risk. Kenichi Shimizu investigates the limit of the two standard bootstrap techniques, the residual and the wild bootstrap, when these are applied to the conditionally heteroscedastic models, such as the ARCH and GARCH models. The author shows that the wild bootstrap usually does not work well when one estimates conditional heteroscedasticity of Engle’s ARCH or Bollerslev’s GARCH models while the residual bootstrap works without problems. Simulation studies from the application of the proposed bootstrap methods are demonstrated together with the theoretical investigation. 
650 0 |a Mathematics. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834809926 
856 4 0 |u http://dx.doi.org/10.1007/978-3-8348-9778-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)