Teaching and Learning of Knot Theory in School Mathematics

This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kawauchi, Akio (Επιμελητής έκδοσης), Yanagimoto, Tomoko (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02937nam a22004575i 4500
001 978-4-431-54138-7
003 DE-He213
005 20151204144027.0
007 cr nn 008mamaa
008 120627s2012 ja | s |||| 0|eng d
020 |a 9784431541387  |9 978-4-431-54138-7 
024 7 |a 10.1007/978-4-431-54138-7  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
245 1 0 |a Teaching and Learning of Knot Theory in School Mathematics  |h [electronic resource] /  |c edited by Akio Kawauchi, Tomoko Yanagimoto. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2012. 
300 |a XIV, 188 p. 327 illus., 93 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of  teaching experiments at all levels which not only demonstrate the creativity and the professional expertise of the members of the study group, but also give a lively impression of students’ learning processes. In addition the reports show that elementary knot theory is not just a preparation for advanced knot theory but also an excellent means to develop spatial thinking. The book can be highly recommended for several reasons: First of all, and that is the main intention of the book, it serves as a comprehensive text for teaching and learning knot theory. Moreover it provides a model for cooperation between mathematicians and mathematics educators based on substantial mathematics. And finally it is a thorough introduction to the Japanese art of lesson studies–again in the context of substantial mathematics. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Topology. 
650 0 |a Mathematics  |x Study and teaching. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Topology. 
650 2 4 |a Mathematics Education. 
700 1 |a Kawauchi, Akio.  |e editor. 
700 1 |a Yanagimoto, Tomoko.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431541370 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-54138-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)