Bernoulli Numbers and Zeta Functions

Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Arakawa, Tsuneo (Συγγραφέας), Ibukiyama, Tomoyoshi (Συγγραφέας), Kaneko, Masanobu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2014.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03655nam a22005055i 4500
001 978-4-431-54919-2
003 DE-He213
005 20151103130618.0
007 cr nn 008mamaa
008 140711s2014 ja | s |||| 0|eng d
020 |a 9784431549192  |9 978-4-431-54919-2 
024 7 |a 10.1007/978-4-431-54919-2  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Arakawa, Tsuneo.  |e author. 
245 1 0 |a Bernoulli Numbers and Zeta Functions  |h [electronic resource] /  |c by Tsuneo Arakawa, Tomoyoshi Ibukiyama, Masanobu Kaneko. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 274 p. 5 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
520 |a Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the double zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Analysis. 
650 2 4 |a Algebra. 
700 1 |a Ibukiyama, Tomoyoshi.  |e author. 
700 1 |a Kaneko, Masanobu.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431549185 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-54919-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)