|
|
|
|
LEADER |
02966nam a22005175i 4500 |
001 |
978-4-431-55019-8 |
003 |
DE-He213 |
005 |
20151030051050.0 |
007 |
cr nn 008mamaa |
008 |
140828s2015 ja | s |||| 0|eng d |
020 |
|
|
|a 9784431550198
|9 978-4-431-55019-8
|
024 |
7 |
|
|a 10.1007/978-4-431-55019-8
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QC173.96-174.52
|
072 |
|
7 |
|a PHJ
|2 bicssc
|
072 |
|
7 |
|a PHQ
|2 bicssc
|
072 |
|
7 |
|a SCI053000
|2 bisacsh
|
082 |
0 |
4 |
|a 535.15
|2 23
|
100 |
1 |
|
|a Ukai, Ryuji.
|e author.
|
245 |
1 |
0 |
|a Multi-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light
|h [electronic resource] /
|c by Ryuji Ukai.
|
264 |
|
1 |
|a Tokyo :
|b Springer Japan :
|b Imprint: Springer,
|c 2015.
|
300 |
|
|
|a XIX, 351 p. 215 illus., 100 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
505 |
0 |
|
|a Introduction -- Quantum Optics -- Quantum States and Quantum State Manipulations -- Offline Scheme And One-Way Quantum Computation -- Cluster States And One-Way Quantum Computation -- Experimental Generation of Optical Continuous-Variable Cluster States -- Experimental Demonstration of Controlled-Z Gate for Continuous Variables -- Experimental Demonstration of Optimum Nonlocal Gate for Continuous Variables -- Experimental Demonstration of Gain-Tunable Entangling Gate for Continuous Variables -- Temporal-Mode Cluster States -- Summary.
|
520 |
|
|
|a In this thesis, the author develops for the first time an implementation methodology for arbitrary Gaussian operations using temporal-mode cluster states. The author also presents three experiments involving continuous-variable one-way quantum computations, where their non-classical nature is shown by observing entanglement at the outputs. The experimental basic structure of one-way quantum computation over two-mode input state is demonstrated by the controlled-Z gate and the optimum nonlocal gate experiments. Furthermore, the author proves that the operation can be controlled by the gain-tunable entangling gate experiment.
|
650 |
|
0 |
|a Physics.
|
650 |
|
0 |
|a Quantum computers.
|
650 |
|
0 |
|a Quantum physics.
|
650 |
|
0 |
|a Quantum optics.
|
650 |
|
0 |
|a Spintronics.
|
650 |
1 |
4 |
|a Physics.
|
650 |
2 |
4 |
|a Quantum Optics.
|
650 |
2 |
4 |
|a Quantum Information Technology, Spintronics.
|
650 |
2 |
4 |
|a Quantum Physics.
|
650 |
2 |
4 |
|a Quantum Computing.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9784431550181
|
830 |
|
0 |
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-4-431-55019-8
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-PHA
|
950 |
|
|
|a Physics and Astronomy (Springer-11651)
|