Weakly Wandering Sequences in Ergodic Theory

The appearance of weakly wandering (ww) sets and sequences for ergodic transformations over half a century ago was an unexpected and surprising event. In time it was shown that ww and related sequences reflected significant and deep properties of ergodic transformations that preserve an infinite mea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Eigen, Stanley (Συγγραφέας), Hajian, Arshag (Συγγραφέας), Ito, Yuji (Συγγραφέας), Prasad, Vidhu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2014.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02564nam a22005535i 4500
001 978-4-431-55108-9
003 DE-He213
005 20151103122552.0
007 cr nn 008mamaa
008 140819s2014 ja | s |||| 0|eng d
020 |a 9784431551089  |9 978-4-431-55108-9 
024 7 |a 10.1007/978-4-431-55108-9  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Eigen, Stanley.  |e author. 
245 1 0 |a Weakly Wandering Sequences in Ergodic Theory  |h [electronic resource] /  |c by Stanley Eigen, Arshag Hajian, Yuji Ito, Vidhu Prasad. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 153 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
520 |a The appearance of weakly wandering (ww) sets and sequences for ergodic transformations over half a century ago was an unexpected and surprising event. In time it was shown that ww and related sequences reflected significant and deep properties of ergodic transformations that preserve an infinite measure. This monograph studies in a systematic way the role of ww and related sequences in the classification of ergodic transformations preserving an infinite measure. Connections of these sequences to additive number theory and tilings of the integers are also discussed. The material presented is self-contained and accessible to graduate students. A basic knowledge of measure theory is adequate for the reader. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Functional analysis. 
650 0 |a Measure theory. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Number Theory. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Functional Analysis. 
700 1 |a Hajian, Arshag.  |e author. 
700 1 |a Ito, Yuji.  |e author. 
700 1 |a Prasad, Vidhu.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431551072 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-55108-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)