Statistical Methods for Imbalanced Data in Ecological and Biological Studies

This book presents a fresh, new approach in that it provides a comprehensive recent review of challenging problems caused by imbalanced data in prediction and classification, and also in that it introduces several of the latest statistical methods of dealing with these problems. The book discusses t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Komori, Osamu (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Eguchi, Shinto (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:JSS Research Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03909nam a2200517 4500
001 978-4-431-55570-4
003 DE-He213
005 20191220125736.0
007 cr nn 008mamaa
008 190702s2019 ja | s |||| 0|eng d
020 |a 9784431555704  |9 978-4-431-55570-4 
024 7 |a 10.1007/978-4-431-55570-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a MBNS  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Komori, Osamu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Methods for Imbalanced Data in Ecological and Biological Studies  |h [electronic resource] /  |c by Osamu Komori, Shinto Eguchi. 
250 |a 1st ed. 2019. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 59 p. 22 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a JSS Research Series in Statistics,  |x 2364-0057 
505 0 |a 1. Imbalance Data -- 2. Weighted Logistic Regression -- 3. Beta-Maxent -- 4. Generalized-t Statistic -- 5. Machine Learning Methods for Imbalance Data. 
520 |a This book presents a fresh, new approach in that it provides a comprehensive recent review of challenging problems caused by imbalanced data in prediction and classification, and also in that it introduces several of the latest statistical methods of dealing with these problems. The book discusses the property of the imbalance of data from two points of view. The first is quantitative imbalance, meaning that the sample size in one population highly outnumbers that in another population. It includes presence-only data as an extreme case, where the presence of a species is confirmed, whereas the information on its absence is uncertain, which is especially common in ecology in predicting habitat distribution. The second is qualitative imbalance, meaning that the data distribution of one population can be well specified whereas that of the other one shows a highly heterogeneous property. A typical case is the existence of outliers commonly observed in gene expression data, and another is heterogeneous characteristics often observed in a case group in case-control studies. The extension of the logistic regression model, maxent, and AdaBoost for imbalanced data is discussed, providing a new framework for improvement of prediction, classification, and performance of variable selection. Weights functions introduced in the methods play an important role in alleviating the imbalance of data. This book also furnishes a new perspective on these problem and shows some applications of the recently developed statistical methods to real data sets. 
650 0 |a Statistics . 
650 0 |a Biostatistics. 
650 1 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
650 2 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Biostatistics.  |0 http://scigraph.springernature.com/things/product-market-codes/L15020 
650 2 4 |a Statistics for Social Sciences, Humanities, Law.  |0 http://scigraph.springernature.com/things/product-market-codes/S17040 
700 1 |a Eguchi, Shinto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431555698 
776 0 8 |i Printed edition:  |z 9784431555711 
830 0 |a JSS Research Series in Statistics,  |x 2364-0057 
856 4 0 |u https://doi.org/10.1007/978-4-431-55570-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)